Effect of naloxone on cerebral perfusion and cardiac performance during experimental cerebral ischemia

1986 ◽  
Vol 64 (5) ◽  
pp. 780-786 ◽  
Author(s):  
Robert J. Hariri ◽  
Elizabeth L. Supra ◽  
John Paul Roberts ◽  
Michael H. Lavyne

✓ Transient global cerebral ischemia (TGI) was induced in awake rats using the “four-vessel” occlusion model of Pulsinelli and Brierley. Blood pressure, arterial blood gases, cerebral blood flow, and cardiac output were measured during the acute (up to 2 hours) and chronic (2 to 72 hours) postischemic time periods. Coincident with the onset of TGI, cardiac output and caudate blood flow were depressed. The former returned to baseline within 30 minutes after the conclusion of TGI, and the latter progressed to hyperemia at 12 hours (81.8 ± 4.9 vs 68.6 ± 3.9 ml/min/100 gm tissue (mean ± standard error of the mean)) and oligemia at 72 hours (45.5 ± 4.8 ml/min/100 gm tissue) post-TGI in the untreated control rats. Arterial blood gases and blood pressure were unchanged. Naloxone (1 mg/kg) given at the time of TGI or as late as 60 minutes post-TGI and every 2 hours thereafter for 24 hours or bilateral cervical vagotomy prevented the depression in cardiac output and blocked the hyperemic-oligemic cerebral blood flow pattern that was predictive of stroke in this rat model. Changes in cardiac output after TGI in this model appear to be mediated by parasympathetic pathways to the heart from the brain stem. Opiate receptor blockade probably blocks endogenous opioid peptide stimulation of these brain-stem circulatory centers, which results in inhibition of parasympathetic activity and improvement in cardiac output. The usefulness of naloxone in the treatment of experimental stroke may be a function of its ability to improve cerebral perfusion in pressure-passive cerebrovascular territories. Variations in cardiac output during experimental stroke may explain the dissimilar responses to naloxone treatment reported by other investigators of experimental stroke.

1994 ◽  
Vol 80 (5) ◽  
pp. 857-864 ◽  
Author(s):  
Joseph M. Darby ◽  
Howard Yonas ◽  
Elizabeth C. Marks ◽  
Susan Durham ◽  
Robert W. Snyder ◽  
...  

✓ The effects of dopamine-induced hypertension on local cerebral blood flow (CBF) were investigated in 13 patients suspected of suffering clinical vasospasm after aneurysmal subarachnoid hemorrhage (SAH). The CBF was measured in multiple vascular territories using xenon-enhanced computerized tomography (CT) with and without dopamine-induced hypertension. A territorial local CBF of 25 ml/100 gm/min or less was used to define ischemia and was identified in nine of the 13 patients. Raising mean arterial blood pressure from 90 ± 11 mm Hg to 111 ± 13 mm Hg (p < 0.05) via dopamine administration increased territorial local CBF above the ischemic range in more than 90% of the uninfarcted territories identified on CT while decreasing local CBF in one-third of the nonischemic territories. Overall, the change in local CBF after dopamine-induced hypertension was correlated with resting local CBF at normotension and was unrelated to the change in blood pressure. Of the 13 patients initially suspected of suffering clinical vasospasm, only 54% had identifiable reversible ischemia. The authors conclude that dopamine-induced hypertension is associated with an increase in flow in patients with ischemia after SAH. However, flow changes associated with dopamine-induced hypertension may not be entirely dependent on changes in systemic blood pressure. The direct cerebrovascular effects of dopamine may have important, yet unpredictable, effects on CBF under clinical pathological conditions. Because there is a potential risk of dopamine-induced ischemia, treatment may be best guided by local CBF measurements.


1978 ◽  
Vol 48 (5) ◽  
pp. 689-703 ◽  
Author(s):  
Erna M. Enevoldsen ◽  
Finn T. Jensen

✓ Regional cerebral blood flow (rCBF), cerebral intraventricular pressure (IVP), systemic arterial blood pressure, and cerebral ventricular fluid (CSF) lactate and pH were studied repeatedly in 23 patients during the acute phase of severe brain injury lasting from 3 to 21 days after the trauma. Cerebrovascular autoregulation was tested repeatedly by means of angiotensin infusion in 21 of the patients, and CO2 response in 14 by means of passive hyperventilation. The pressure in the brain ventricles was measured continuously in all patients and kept below 45 mm Hg during the study. If the IVP increased more than 10 mm Hg during the angiotensin infusion (as in one case), the autoregulation test was considered contraindicated and the angiotensin infusion was discontinued. Dissociation between cerebrovascular autoregulation and CO2 response was a common phenomenon. Typically, autoregulation appeared preserved in the most severely injured areas of the cerebral cortex when the patient was deeply comatose, but deteriorated concomitantly with recovery; by the time the patient became alert, the autoregulation was always impaired. The CO2 response was impaired only in patients who were deeply comatose and had attacks of decerebrate rigidity; during recovery the CO2 response became normal. Thus, preserved autoregulation associated with impaired CO2 response indicated very severe brain damage, whereas impaired autoregulation associated with preserved CO2 response suggested moderate or severe brain damage in recovery. These paradoxical observations raise the question whether the preserved autoregulation seen in severely injured brain tissue is a true autoregulation caused by an active vasoconstrictor response to an increase in blood pressure.


1980 ◽  
Vol 53 (1) ◽  
pp. 58-62 ◽  
Author(s):  
Frederick D. Brown ◽  
Lydia M. Johns ◽  
Sean Mullan

✓ The effects of dimethyl sulfoxide therapy were studied in rhesus monkeys following a standardized occipitofrontal missile injury. This therapy resulted in substantially higher blood pressure, cerebral perfusion pressure, blood flow, and oxidative metabolism than those of a group of monkeys that had been treated similarly with mannitol, and than those of an untreated group.


1985 ◽  
Vol 63 (1) ◽  
pp. 120-124 ◽  
Author(s):  
Andras A. Kemeny ◽  
Jan A. Jakubowski ◽  
Emil Pasztor ◽  
Anthony A. Jefferson ◽  
Richard Wojcikiewicz

✓ The possibility that bromocriptine has a selective effect on blood flow in the adenohypophysis was examined in rats. Twenty-four anesthetized male Wistar rats underwent measurement of blood flow using the hydrogen clearance method. Intravenous injection of 50 µg/kg bromocriptine reduced the blood flow in both the medial and lateral parts of the adenohypophysis to about 70% of the baseline value. Simultaneously measured cerebral cortical and white matter flows were unchanged. Similar results were obtained following administration of a higher dose (500 µg/kg) of bromocriptine. This phenomenon cannot be attributed to the decrease in blood pressure. The course of change in blood flow in the medial and lateral adenohypophysis did not follow that of the mean arterial blood pressure, and the alteration of blood pressure remained within the limits of autoregulation in the adenohypophysis. The results indicate that bromocriptine is capable of reducing blood flow selectively in the pituitary region. This mechanism may contribute to the clinical usefulness of this drug.


1992 ◽  
Vol 77 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Gerrit J. Bouma ◽  
J. Paul Muizelaar ◽  
Kuniaki Bandoh ◽  
Anthony Marmarou

✓ Increased brain tissue stiffness following severe traumatic brain injury is an important factor in the development of raised intracranial pressure (ICP). However, the mechanisms involved in brain tissue stiffness are not well understood, particularly the effect of changes in systemic blood pressure. Thus, controversy exists as to the optimum management of blood pressure in severe head injury, and diverging treatment strategies have been proposed. In the present study, the effect of induced alterations in blood pressure on ICP and brain stiffness as indicated by the pressure-volume index (PVI) was studied during 58 tests of autoregulation of cerebral blood flow in 47 comatose head-injured patients. In patients with intact autoregulation mechanisms, lowering the blood pressure caused a steep increase in ICP (from 20 ± 3 to 30 ± 2 mm Hg, mean ± standard error of the mean), while raising blood pressure did not change the ICP. When autoregulation was defective, ICP varied directly with blood pressure. Accordingly, with intact autoregulation, a weak positive correlation between PVI and cerebral perfusion pressure was found; however, with defective autoregulation, the PVI was inversely related to cerebral perfusion pressure. The various blood pressure manipulations did not significantly alter the cerebral metabolic rate of oxygen, irrespective of the status of autoregulation. It is concluded that the changes in ICP can be explained by changes in cerebral blood volume due to cerebral vasoconstriction or dilatation, while the changes in PVI can be largely attributed to alterations in transmural pressure, which may or may not be attenuated by cerebral arteriolar vasoconstriction, depending on the autoregulatory status. The data indicate that a decline in blood pressure should be avoided in head-injured patients, even when baseline blood pressure is high. On the other hand, induced hypertension did not consistently reduce ICP in patients with intact autoregulation and should only be attempted after thorough assessment of the cerebrovascular status and under careful monitoring of its effects.


1999 ◽  
Vol 90 (3) ◽  
pp. 520-526 ◽  
Author(s):  
Stefan-Nikolaus Kroppenstedt ◽  
Michael Kern ◽  
Ulrich-Wilhelm Thomale ◽  
Gerd-Helge Schneider ◽  
Wolfgang Reinhardt Lanksch ◽  
...  

Object. Although it is generally acknowledged that a sufficient cerebral perfusion pressure (CPP) is necessary for treatment of severe head injury, the optimum CPP is still a subject of debate. The purpose of this study was to investigate the effect of various levels of blood pressure and, thereby, CPP on posttraumatic contusion volume.Methods. The left hemispheres of 60 rats were subjected to controlled cortical impact injury (CCII). In one group of animals the mean arterial blood pressure (MABP) was lowered for 30 minutes to 80, 70, 60, 50, or 40 mm Hg 4 hours after contusion by using hypobaric hypotension. In another group of animals the MABP was elevated for 3 hours to 120 or 140 mm Hg 4 hours after contusion by administering dopamine. The MABP was not changed in respective control groups. Intracranial pressure (ICP) was monitored with an ICP microsensor. The rats were killed 28 hours after trauma occurred and contusion volume was assessed using hematoxylin and eosin—stained coronal slices. No significant change in contusion volume was caused by a decrease in MABP from 94 to 80 mm Hg (ICP 12 ± 1 mm Hg), but a reduction of MABP to 70 mm Hg (ICP 9 ± 1 mm Hg) significantly increased the contusion volume (p < 0.05). A further reduction of MABP led to an even more enlarged contusion volume. Although an elevation of MABP to 120 mm Hg (ICP 16 ± 2 mm Hg) did not significantly affect contusion volume, there was a significant increase in the contusion volume at 140 mm Hg MABP (p < 0.05; ICP 18 ± 1 mm Hg).Conclusions. Under these experimental conditions, CPP should be kept within 70 to 105 mm Hg to minimize posttraumatic contusion volume. A CPP of 60 mm Hg and lower as well as a CPP of 120 mm Hg and higher should be considered detrimental.


2005 ◽  
Vol 102 (3) ◽  
pp. 455-459 ◽  
Author(s):  
Roberto Imberti ◽  
Marinella Fuardo ◽  
Guido Bellinzona ◽  
Michele Pagani ◽  
Martin Langer

Object. Plateau waves are sudden and steep increases in intracranial pressure (ICP) that can develop in patients with cerebral injuries, reduced pressure—volume compensatory reserve, and preserved autoregulation. They are caused by cerebral vasodilation in response to a reduction in cerebral perfusion and are associated with increased cerebral blood volume and reduced cerebral blood flow. The authors evaluated the hypothesis that administration of indomethacin, a potent cerebral arteriolar vasoconstrictor, could interrupt the vicious cycle that occurs during plateau waves, extinguishing these waves and, ultimately, restoring cerebral perfusion and oxygenation. Methods. Plateau waves developed in nine patients, seven with severe traumatic brain injury and two with intraparenchymal hemorrhage. One to four episodes of plateau waves per patient were treated with indomethacin (15–20 mg), which was delivered by an intravenous bolus injection. Each patient's mean arterial blood flow (MABP), ICP, cerebral perfusion pressure (CPP), and cerebral tissue PO2 were continuously monitored and the data obtained were stored in a personal computer. Each patient's jugular venous O2 saturation (SjvO2) and venoarterial difference in PCO2 were evaluated by intermittent blood sampling. During five episodes of plateau waves, middle cerebral artery flow velocities were evaluated by transcranial Doppler ultrasonography. Indomethacin extinguished all plateau waves. On average, the ICP decreased from an initial value of 58.9 ± 11.6 mm Hg to 21.2 ± 8.6 and 25.8 ± 13.7 mm Hg after 5 and 10 minutes, respectively (p < 0.01). The MABP did not change significantly. As a consequence the CPP increased by 98 and 81% after 5 and 10 minutes, respectively (p < 0.01). Five and 10 minutes after indomethacin was administered, SjvO2 increased from an initial value of 50 ± 10.5% to 62 ± 7.6 and 59.9 ± 9.3%, respectively (p < 0.01); the cerebral tissue PO2 increased from an initial value of 13.4 ± 10.6 mm Hg to 23.6 ± 9.58 and 21.9 ± 9.2 mm Hg, respectively (p < 0.05); and the venous—arterial PCO2 decreased significantly. The mean and diastolic flow velocities increased significantly, whereas the pulsatility index decreased from 1.39 ± 0.56 to 1.09 ± 0.4 at 5 minutes and 1.06 ± 0.36 at 10 minutes (p < 0.05). Conclusions. The findings confirm that plateau waves are caused by vasodilation and show that indomethacin, by constricting the cerebral arteries, is effective in extinguishing plateau waves, ultimately restoring cerebral perfusion and oxygenation.


1992 ◽  
Vol 76 (3) ◽  
pp. 415-421 ◽  
Author(s):  
David W. Newell ◽  
Rune Aaslid ◽  
Renate Stooss ◽  
Hans J. Reulen

✓ Intracranial pressure (ICP) and continuous transcranial Doppler ultrasound signals were monitored in 20 head-injured patients and simultaneous synchronous fluctuations of middle cerebral artery (MCA) velocity and B waves of the ICP were observed. Continuous simultaneous monitoring of MCA velocity, ICP, arterial blood pressure, and expired CO2 revealed that both velocity waves and B waves occurred despite a constant CO2 concentration in ventilated patients and were usually not accompanied by fluctuations in the arterial blood pressure. Additional recordings from the extracranial carotid artery during the ICP B waves revealed similar synchronous fluctuations in the velocity of this artery, strongly supporting the hypothesis that blood flow fluctuations produce the velocity waves. The ratio between ICP wave amplitude and velocity wave amplitude was highly correlated to the ICP (r = 0.81, p < 0.001). Velocity waves of similar characteristics and frequency, but usually of shorter duration, were observed in seven of 10 normal subjects in whom MCA velocity was recorded for 1 hour. The findings in this report strongly suggest that B waves in the ICP are a secondary effect of vasomotor waves, producing cerebral blood flow fluctuations that become amplified in the ICP tracing, in states of reduced intracranial compliance.


2000 ◽  
Vol 92 (1) ◽  
pp. 100-107 ◽  
Author(s):  
Helene Benveniste ◽  
Katie R. Kim ◽  
Laurence W. Hedlund ◽  
John W. Kim ◽  
Allan H. Friedman

Object. It is taken for granted that patients with hypertension are at greater risk for intracerebral hemorrhage during neurosurgical procedures than patients with normal blood pressure. The anesthesiologist, therefore, maintains mean arterial blood pressure (MABP) near the lower end of the autoregulation curve, which in patients with preexisting hypertension can be as high as 110 to 130 mm Hg. Whether patients with long-standing hypertension experience more hemorrhage than normotensive patients after brain surgery if their blood pressure is maintained at the presurgical hypertensive level is currently unknown. The authors tested this hypothesis experimentally in a rodent model.Methods. Hemorrhage and edema in the brain after needle biopsy was measured in vivo by using three-dimensional magnetic resonance (MR) microscopy in the following groups: WKY rats, acutely hypertensive WKY rats, spontaneously hypertensive rats (SHR strain), and SHR rats treated with either sodium nitroprusside or nicardipine. Group differences were compared using Tukey's studentized range test followed by individual pairwise comparisons of groups and adjusted for multiple comparisons.There were no differences in PaCO2, pH, and body temperature among the groups. The findings in this study indicated that only acutely hypertensive WKY rats had larger volumes of hemorrhage. Chronically hypertensive SHR rats with MABPs of 130 mm Hg did not have larger hemorrhages than normotensive rats. There were no differences in edema volumes among groups.Conclusions. The brains of SHR rats with elevated systemic MABPs are probably protected against excessive hemorrhage during surgery because of greater resistance in the larger cerebral arteries and, thus, reduced cerebral intravascular pressures.


1992 ◽  
Vol 263 (3) ◽  
pp. H919-H928 ◽  
Author(s):  
S. M. Bradley ◽  
F. L. Hanley ◽  
B. W. Duncan ◽  
R. W. Jennings ◽  
J. A. Jester ◽  
...  

Successful fetal cardiac bypass might allow prenatal correction of some congenital heart defects. However, previous studies have shown that fetal cardiac bypass may result in impaired fetal gas exchange after bypass. To investigate the etiology of this impairment, we determined whether fetal cardiac bypass causes a redistribution of fetal regional blood flows and, if so, whether a vasodilator (sodium nitroprusside) can prevent this redistribution. We also determined the effects of fetal cardiac bypass with and without nitroprusside on fetal arterial blood gases and hemodynamics. Eighteen fetal sheep were studied in utero under general anesthesia. Seven fetuses underwent bypass without nitroprusside, six underwent bypass with nitroprusside, and five were no-bypass controls. Blood flows were determined using radionuclide-labeled microspheres. After bypass without nitroprusside, placental blood flow decreased by 25–60%, whereas cardiac output increased by 15–25%. Flow to all other fetal organs increased or remained unchanged. Decreased placental blood flow after bypass was accompanied by a fall in PO2 and a rise in PCO2. Nitroprusside improved placental blood flow, cardiac output, and arterial blood gases after bypass. Thus fetal cardiac bypass causes a redistribution of regional blood flow away from the placenta and toward the other fetal organs. Nitroprusside partially prevents this redistribution. Methods of improving placental blood flow in the postbypass period may prove critical to the success of fetal cardiac bypass.


Sign in / Sign up

Export Citation Format

Share Document