controlled cortical impact injury
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 6)

H-INDEX

32
(FIVE YEARS 3)

2020 ◽  
Vol 9 (12) ◽  
pp. 2000122
Author(s):  
Volha Liaudanskaya ◽  
Joon Yong Chung ◽  
Craig Mizzoni ◽  
Nicolas Rouleau ◽  
Alexander N. Berk ◽  
...  

2019 ◽  
Vol 37 (3) ◽  
pp. 245-263
Author(s):  
Eric E. Abrahamson ◽  
Samuel M. Poloyac ◽  
C. Edward Dixon ◽  
Steven T. Dekosky ◽  
Milos D. Ikonomovic

2018 ◽  
Vol 129 (2) ◽  
pp. 278-295 ◽  
Author(s):  
Austin J. Peters ◽  
Laura E. Villasana ◽  
Eric Schnell

Abstract What We Already Know about This Topic What This Article Tells Us That Is New Background Traumatic brain injury induces cellular proliferation in the hippocampus, which generates new neurons and glial cells during recovery. This process is regulated by N-methyl-d-aspartate–type glutamate receptors, which are inhibited by ketamine. The authors hypothesized that ketamine treatment after traumatic brain injury would reduce hippocampal cell proliferation, leading to worse behavioral outcomes in mice. Methods Traumatic brain injury was induced in mice using a controlled cortical impact injury, after which mice (N = 118) received either ketamine or vehicle systemically for 1 week. The authors utilized immunohistochemical assays to evaluate neuronal, astroglial, and microglial cell proliferation and survival 3 days, 2 weeks, and 6 weeks postintervention. The Morris water maze reversal task was used to assess cognitive recovery. Results Ketamine dramatically increased microglial proliferation in the granule cell layer of the hippocampus 3 days after injury (injury + vehicle, 2,800 ± 2,700 cells/mm3, n = 4; injury + ketamine, 11,200 ± 6,600 cells/mm3, n = 6; P = 0.012). Ketamine treatment also prevented the production of astrocytes 2 weeks after injury (sham + vehicle, 2,400 ± 3,200 cells/mm3, n = 13; injury + vehicle, 10,500 ± 11,300 cells/mm3, n = 12; P = 0.013 vs. sham + vehicle; sham + ketamine, 3,500 ± 4,900 cells/mm3, n = 14; injury + ketamine, 4,800 ± 3,000 cells/mm3, n = 13; P = 0.955 vs. sham + ketamine). Independent of injury, ketamine temporarily reduced neurogenesis (vehicle-exposed, 105,100 ± 66,700, cells/mm3, n = 25; ketamine-exposed, 74,300 ± 29,200 cells/mm3, n = 27; P = 0.031). Ketamine administration improved performance in the Morris water maze reversal test after injury, but had no effect on performance in sham-treated mice. Conclusions Ketamine alters hippocampal cell proliferation after traumatic brain injury. Surprisingly, these changes were associated with improvement in a neurogenesis-related behavioral recall task, suggesting a possible benefit from ketamine administration after traumatic brain injury in mice. Future studies are needed to determine generalizability and mechanism.


2017 ◽  
Vol 33 (2) ◽  
pp. 412-421 ◽  
Author(s):  
Philipp Pieroh ◽  
Daniel-Christoph Wagner ◽  
Beat Alessandri ◽  
Mojgan Dabbagh Nazari ◽  
Angela Ehrlich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document