Dimethyl sulfoxide in experimental brain injury, with comparison to mannitol

1980 ◽  
Vol 53 (1) ◽  
pp. 58-62 ◽  
Author(s):  
Frederick D. Brown ◽  
Lydia M. Johns ◽  
Sean Mullan

✓ The effects of dimethyl sulfoxide therapy were studied in rhesus monkeys following a standardized occipitofrontal missile injury. This therapy resulted in substantially higher blood pressure, cerebral perfusion pressure, blood flow, and oxidative metabolism than those of a group of monkeys that had been treated similarly with mannitol, and than those of an untreated group.

1992 ◽  
Vol 77 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Gerrit J. Bouma ◽  
J. Paul Muizelaar ◽  
Kuniaki Bandoh ◽  
Anthony Marmarou

✓ Increased brain tissue stiffness following severe traumatic brain injury is an important factor in the development of raised intracranial pressure (ICP). However, the mechanisms involved in brain tissue stiffness are not well understood, particularly the effect of changes in systemic blood pressure. Thus, controversy exists as to the optimum management of blood pressure in severe head injury, and diverging treatment strategies have been proposed. In the present study, the effect of induced alterations in blood pressure on ICP and brain stiffness as indicated by the pressure-volume index (PVI) was studied during 58 tests of autoregulation of cerebral blood flow in 47 comatose head-injured patients. In patients with intact autoregulation mechanisms, lowering the blood pressure caused a steep increase in ICP (from 20 ± 3 to 30 ± 2 mm Hg, mean ± standard error of the mean), while raising blood pressure did not change the ICP. When autoregulation was defective, ICP varied directly with blood pressure. Accordingly, with intact autoregulation, a weak positive correlation between PVI and cerebral perfusion pressure was found; however, with defective autoregulation, the PVI was inversely related to cerebral perfusion pressure. The various blood pressure manipulations did not significantly alter the cerebral metabolic rate of oxygen, irrespective of the status of autoregulation. It is concluded that the changes in ICP can be explained by changes in cerebral blood volume due to cerebral vasoconstriction or dilatation, while the changes in PVI can be largely attributed to alterations in transmural pressure, which may or may not be attenuated by cerebral arteriolar vasoconstriction, depending on the autoregulatory status. The data indicate that a decline in blood pressure should be avoided in head-injured patients, even when baseline blood pressure is high. On the other hand, induced hypertension did not consistently reduce ICP in patients with intact autoregulation and should only be attempted after thorough assessment of the cerebrovascular status and under careful monitoring of its effects.


1975 ◽  
Vol 43 (3) ◽  
pp. 308-317 ◽  
Author(s):  
Lawrence F. Marshall ◽  
Felix Durity ◽  
Robert Lounsbury ◽  
David I. Graham ◽  
Frank Welsh ◽  
...  

✓ Cerebral blood flow, electrical activity, and neurological function were studied in rabbits subjected to either 15 minutes of oligemia (20 torr cerebral perfusion pressure) or complete cerebral ischemia produced by cisterna magna infusion. During oligemia, flow was reduced from 68.4 ± 4.2 ml/100 gm/min to 26.3 ± 4.4 (p < .01), and during ischemia animals had no proven flow. By 5 minutes after oligemia or ischemia significant symmetrical hyperemia occurred and there was no evidence of the no-reflow phenomenon. The electroencephalogram became isoelectric significantly later and returned significantly sooner in oligemia than in ischemia. Oligemic animals had earlier and better return of neurological function than their ischemic counterparts, although postinsult hypocapnia improved functional recovery in both groups. These experiments do not support the concept that oligemia is a more severe insult than complete ischemia. In intracranial hypertension produced by this model, the no-reflow phenomenon does not occur.


1998 ◽  
Vol 89 (3) ◽  
pp. 448-453 ◽  
Author(s):  
Ingunn R. Rise ◽  
Ole J. Kirkeby

Object. The authors tested the hypothesis in a porcine model that inhibition of nitric oxide synthesis during reduced cerebral perfusion pressure (CPP) affected the relative cerebral blood flow (CBF) and the cerebrovascular resistance. Methods. The CPP was reduced by inducing high cerebrospinal fluid pressure and hemorrhagic hypotension. With continuous blood and intracranial pressure monitoring, relative CPP was estimated using the laser Doppler flowmetry technique in nine pigs that received 40 mg/kg nitro-l-arginine methyl ester (l-NAME) and in nine control animals. The l-NAME caused a decrease in relative CBF (p < 0.01) and increases in cerebrovascular resistance (p < 0.01), blood pressure (p < 0.05), and CPP (p < 0.001). During high intracranial pressure there were no significant differences between the treated animals and the controls. After hemorrhage, there was no significant difference between the groups initially, but 30 minutes later the cerebrovascular resistance was decreased in the control group and increased in the l-NAME group relative to baseline (p < 0.05). Combined hemorrhage and high intracranial pressure increased the difference between the two groups with regard to cerebrovascular resistance (p < 0.05). Conclusions. These results suggest that nitric oxide synthesis inhibition affects the autoregulatory response of the cerebral circulation after cardiovascular compensation has taken place. Nitric oxide synthesis inhibition enhanced the undesirable effects of high intracranial pressure during hypovolemia.


1998 ◽  
Vol 89 (6) ◽  
pp. 971-982 ◽  
Author(s):  
Paul Vespa ◽  
Mayumi Prins ◽  
Elizabeth Ronne-Engstrom ◽  
Michael Caron ◽  
Ehud Shalmon ◽  
...  

Object. To determine the extent and duration of change in extracellular glutamate levels after human traumatic brain injury (TBI), 17 severely brain injured adults underwent implantation of a cerebral microdialysis probe and systematic sampling was conducted for 1 to 9 days postinjury. Methods. A total of 772 hourly microdialysis samples were obtained in 17 patients (median Glasgow Coma Scale score 5 ± 2.5, mean age 39.4 ± 20.4 years). The mean (± standard deviation) glutamate levels in the dialysate were evaluated for 9 days, during which the mean peak concentration reached 25.4 ± 13.7 (µM on postinjury Day 3. In each patient transient elevations in glutamate were seen each day. However, these elevations were most commonly seen on Day 3. In all patients there was a mean of 4.5 ± 2.5 transient elevations in glutamate lasting a mean duration of 4.4 ± 4.9 hours. These increases were seen in conjunction with seizure activity. However, in many seizure-free patients the increase in extracellular glutamate occurred when cerebral perfusion pressure was less than 70 mm Hg (p < 0.001). Given the potential injury-induced uncoupling of cerebral blood flow and metabolism after TBI, these increases in extracellular glutamate may reflect a degree of enhanced cellular crisis, which in severe head injury in humans appears to last up to 9 days. Conclusions. Extracellular neurochemical measurements of excitatory amino acids may provide a marker for secondary insults that can compound human TBI.


1979 ◽  
Vol 50 (4) ◽  
pp. 423-432 ◽  
Author(s):  
Frederick D. Brown ◽  
Lydia Johns ◽  
Jafar J. Jafar ◽  
H. Alan Crockard ◽  
Sean Mullan

✓ The experimental model of a cerebral missile injury developed by Crockard was used in three groups of Rhesus monkeys treated with mannitol. One group received mannitol 15 minutes after being injured with a BB pellet at 90 m/sec impact. Another group was wounded identically, but mannitol treatment was delayed until 1 hour after injury. The last group was wounded with the missile traveling at 180 m/sec, and mannitol was started 15 minutes after trauma. The data were contrasted with the results from the original model. After receiving mannitol, all groups showed marked improvement in mean blood pressure, cerebral perfusion pressure, cerebral blood flow, and cerebral metabolic rate of oxygen consumption out of proportion to the degree of reduction in intracranial pressure (ICP). The authors conclude that the therapeutic value of mannitol may, in some injuries, be directly related to its effects on blood flow and metabolism, as well as to its better known effects upon ICP.


1977 ◽  
Vol 46 (6) ◽  
pp. 776-783 ◽  
Author(s):  
H. Alan Crockard ◽  
Frederick D. Brown ◽  
Lydia M. Johns ◽  
Sean Mullan

✓ An experimental model of cerebral missile injury in rhesus monkeys is described. The main objective was to create a “clean” wound devoid of bleeding from major vessels and complications due to bone fragments. There was a correlation between the wounding energy and the physiological signs, although we underestimated the actual energy level. After the right parietooccipital to right frontal injury, there was bradycardia, changes in blood pressure, and, in high-energy wounds, a marked alteration in respiration. This suggests that the missile's energy produces direct brain-stem damage, the extent of which can be related to the wounding energy.


1986 ◽  
Vol 64 (5) ◽  
pp. 780-786 ◽  
Author(s):  
Robert J. Hariri ◽  
Elizabeth L. Supra ◽  
John Paul Roberts ◽  
Michael H. Lavyne

✓ Transient global cerebral ischemia (TGI) was induced in awake rats using the “four-vessel” occlusion model of Pulsinelli and Brierley. Blood pressure, arterial blood gases, cerebral blood flow, and cardiac output were measured during the acute (up to 2 hours) and chronic (2 to 72 hours) postischemic time periods. Coincident with the onset of TGI, cardiac output and caudate blood flow were depressed. The former returned to baseline within 30 minutes after the conclusion of TGI, and the latter progressed to hyperemia at 12 hours (81.8 ± 4.9 vs 68.6 ± 3.9 ml/min/100 gm tissue (mean ± standard error of the mean)) and oligemia at 72 hours (45.5 ± 4.8 ml/min/100 gm tissue) post-TGI in the untreated control rats. Arterial blood gases and blood pressure were unchanged. Naloxone (1 mg/kg) given at the time of TGI or as late as 60 minutes post-TGI and every 2 hours thereafter for 24 hours or bilateral cervical vagotomy prevented the depression in cardiac output and blocked the hyperemic-oligemic cerebral blood flow pattern that was predictive of stroke in this rat model. Changes in cardiac output after TGI in this model appear to be mediated by parasympathetic pathways to the heart from the brain stem. Opiate receptor blockade probably blocks endogenous opioid peptide stimulation of these brain-stem circulatory centers, which results in inhibition of parasympathetic activity and improvement in cardiac output. The usefulness of naloxone in the treatment of experimental stroke may be a function of its ability to improve cerebral perfusion in pressure-passive cerebrovascular territories. Variations in cardiac output during experimental stroke may explain the dissimilar responses to naloxone treatment reported by other investigators of experimental stroke.


1999 ◽  
Vol 90 (3) ◽  
pp. 520-526 ◽  
Author(s):  
Stefan-Nikolaus Kroppenstedt ◽  
Michael Kern ◽  
Ulrich-Wilhelm Thomale ◽  
Gerd-Helge Schneider ◽  
Wolfgang Reinhardt Lanksch ◽  
...  

Object. Although it is generally acknowledged that a sufficient cerebral perfusion pressure (CPP) is necessary for treatment of severe head injury, the optimum CPP is still a subject of debate. The purpose of this study was to investigate the effect of various levels of blood pressure and, thereby, CPP on posttraumatic contusion volume.Methods. The left hemispheres of 60 rats were subjected to controlled cortical impact injury (CCII). In one group of animals the mean arterial blood pressure (MABP) was lowered for 30 minutes to 80, 70, 60, 50, or 40 mm Hg 4 hours after contusion by using hypobaric hypotension. In another group of animals the MABP was elevated for 3 hours to 120 or 140 mm Hg 4 hours after contusion by administering dopamine. The MABP was not changed in respective control groups. Intracranial pressure (ICP) was monitored with an ICP microsensor. The rats were killed 28 hours after trauma occurred and contusion volume was assessed using hematoxylin and eosin—stained coronal slices. No significant change in contusion volume was caused by a decrease in MABP from 94 to 80 mm Hg (ICP 12 ± 1 mm Hg), but a reduction of MABP to 70 mm Hg (ICP 9 ± 1 mm Hg) significantly increased the contusion volume (p < 0.05). A further reduction of MABP led to an even more enlarged contusion volume. Although an elevation of MABP to 120 mm Hg (ICP 16 ± 2 mm Hg) did not significantly affect contusion volume, there was a significant increase in the contusion volume at 140 mm Hg MABP (p < 0.05; ICP 18 ± 1 mm Hg).Conclusions. Under these experimental conditions, CPP should be kept within 70 to 105 mm Hg to minimize posttraumatic contusion volume. A CPP of 60 mm Hg and lower as well as a CPP of 120 mm Hg and higher should be considered detrimental.


1987 ◽  
Vol 67 (3) ◽  
pp. 377-380 ◽  
Author(s):  
W. John Gray ◽  
Michael J. Rosner

✓ The pressure-volume index (PVI) was measured in six adult cats while cerebral perfusion pressure (CPP) was reduced from normal levels to below the autoregulatory range by a continuous infusion of adenosine triphosphate. Anesthesia was induced with methohexital and maintained with an N2O:O2 (70%:30%) mixture. Body temperature, hematocrit, and PaCO2 were held constant throughout each experiment. Cerebral blood flow (CBF) was measured by the hydrogen clearance method. At CPP levels over 50 mm Hg, CBF remained relatively constant despite changes in CPP. Within this range, the PVI varied directly with CPP (PVI = 0.24 ml + 0.0013 mm Hg CPP). Below the autoregulatory range, CBF fell progressively with further decreases in CPP; in this range, PVI was found to increase as CPP fell (PVI = 0.84 ml − 0.0071 mm Hg CPP). These results indicate that the PVI is a complex function of CPP, varying directly with CPP within the autoregulatory range and indirectly with CPP below the autoregulatory range.


1976 ◽  
Vol 45 (5) ◽  
pp. 498-507 ◽  
Author(s):  
Jack M. Fein

✓ Ischemia-provoking factors such as vasospasm, decreased cerebral perfusion pressure, and intravascular thrombosis may be present after subarachnoid hemorrhage (SAH). When these factors were not present during controlled SAH, a primary depression of cerebral glycolysis associated with normal stores of energy-rich phosphates was found. Although cerebral blood flow usually changes in response to changes in cerebral metabolic needs, this influence on the circulation was not evident in the early hours after SAH. After 3 to 4 hours an erratic decrease in blood flow occurred, probably related to vasospasm; and there were measurable decreases in energy-rich phosphates similar to those occurring after more severe and prolonged ischemias. These findings are indicative of abnormally erratic vascular responses to metabolic cues and may play a role in producing the encephalopathy of SAH.


Sign in / Sign up

Export Citation Format

Share Document