Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography

1992 ◽  
Vol 77 (3) ◽  
pp. 360-368 ◽  
Author(s):  
Gerrit J. Bouma ◽  
J. Paul Muizelaar ◽  
Warren A. Stringer ◽  
Sung C. Choi ◽  
Panos Fatouros ◽  
...  

✓ The role of cerebral ischemia in the pathophysiology of traumatic brain injury is unclear. Cerebral blood flow (CBF) measurements with 133Xe have thus far revealed ischemia in a substantial number of patients only when performed between 4 and 12 hours postinjury. But these studies cannot be performed sooner after injury, they cannot be done in patients with intracranial hematomas still in place, and they cannot detect focal ischemia. Therefore, the authors performed CBF measurements in 35 comatose head-injured patients using stable xenon-enhanced computerized tomography (CT), simultaneously with the initial CT scan (at a mean (± standard error of the mean) interval of 3.1 ± 2.1 hours after injury). Seven patients with diffuse cerebral swelling had significantly lower flows in all brain regions measured as compared to patients without swelling or with focal contusions; in four of the seven, cerebral ischemia (CBF ≤ 18 ml/100 gm · min−1) was present. Acute intracranial hematomas were associated with decreased CBF and regional ischemia in the ipsilateral hemisphere, but did not disproportionately impair brain-stem blood flow. Overall, global or regional ischemia was found in 11 patients (31.4%). There was no correlation between the presence of hypoxia or hypertension before resuscitation and the occurrence of ischemia, neither could ischemia be attributed to low pCO2. Ischemia was significantly associated with early mortality (p < 0.02), whereas normal or high CBF values were not predictive of favorable short-term outcome. These data support the hypothesis that ischemia is an important secondary injury mechanism after traumatic brain injury, and that trauma may share pathophysiological mechanisms with stroke in a large number of cases; this may have important implications for the use of hyperventilation and antihypertensive drugs in the acute management of severely head-injured patients, and may lead to testing of drugs that are effective or have shown promise in the treatment of ischemic stroke.

1991 ◽  
Vol 75 (5) ◽  
pp. 685-693 ◽  
Author(s):  
Gerrit J. Bouma ◽  
J. Paul Muizelaar ◽  
Sung C. Choi ◽  
Pauline G. Newlon ◽  
Harold F. Young

✓ Although experimental and pathological studies suggest an important role for ischemia in the majority of fatal cases of traumatic brain injury, ischemia has been a rare finding in most clinical studies of cerebral blood flow (CBF) in head-injured patients. The hypothesis of the present study was that cerebral ischemia occurs in the first few hours after injury, but that CBF measurements have not been performed early enough. Early measurements of CBF (by the 133Xe intravenous method) and arteriovenous oxygen difference (AVDO2) were obtained in 186 adult head-injured patients with a Glasgow Coma Scale score of 8 or less, and were correlated with neurological status and outcome. During the first 6 hours after injury, CBF was low (22.5 ± 5.2 ml/100 gm/min) but increased significantly during the first 24 hours. The AVDO2 followed the opposite course; the decline of AVDO2 was most profound in patients with low motor scores, suggesting relative hyperemia after 24 hours. A significant correlation between motor score and CBF was found in the first 8 hours after injury (Spearman coefficient = 0.69, p < 0.001), but as early as 12 hours postinjury this correlation was lost. A similar pattern was found for the relationship between CBF and outcome. Cerebral blood flow below the threshold for infarction (CBF ≤ 18 ml/100 gm/min) was found in one-third of the studies obtained within 6 hours, the incidence rapidly decreasing thereafter. A low CBF after 24 hours was not generally associated with a high AVDO2, and was probably a reflection of low oxidative metabolism rather than frank ischemia. In 24 patients, a CBF of 18 ml/100 gm/min or less was found at some point after injury; the mortality rate was significantly higher in this subgroup, and survivors did worse. In some cases, ischemia was successfully treated by reducing hyperventilation or inducing arterial hypertension. These results support the above hypothesis, and suggest that early ischemia after traumatic brain injury may be an important factor determining neurological outcome. Moreover, these data indicate that early hyperventilation or lowering of blood pressure to prevent brain edema may be harmful.


2008 ◽  
Vol 36 (11) ◽  
pp. 3089-3092 ◽  
Author(s):  
Marco Botteri ◽  
Elisabetta Bandera ◽  
Cosetta Minelli ◽  
Nicola Latronico

2018 ◽  
Vol 129 (1) ◽  
pp. 241-246 ◽  
Author(s):  
Aditya Vedantam ◽  
Claudia S. Robertson ◽  
Shankar P. Gopinath

OBJECTIVEFew studies have reported on changes in quantitative cerebral blood flow (CBF) after decompressive craniectomy and the impact of these measures on clinical outcome. The aim of the present study was to evaluate global and regional CBF patterns in relation to cerebral hemodynamic parameters in patients after decompressive craniectomy for traumatic brain injury (TBI).METHODSThe authors studied clinical and imaging data of patients who underwent xenon-enhanced CT (XeCT) CBF studies after decompressive craniectomy for evacuation of a mass lesion and/or to relieve intractable intracranial hypertension. Cerebral hemodynamic parameters prior to decompressive craniectomy and at the time of the XeCT CBF study were recorded. Global and regional CBF after decompressive craniectomy was measured using XeCT. Regional cortical CBF was measured under the craniectomy defect as well as for each cerebral hemisphere. Associations between CBF, cerebral hemodynamics, and early clinical outcome were assessed.RESULTSTwenty-seven patients were included in this study. The majority of patients (88.9%) had an initial Glasgow Coma Scale score ≤ 8. The median time between injury and decompressive surgery was 9 hours. Primary decompressive surgery (within 24 hours) was performed in the majority of patients (n = 18, 66.7%). Six patients had died by the time of discharge. XeCT CBF studies were performed a median of 51 hours after decompressive surgery. The mean global CBF after decompressive craniectomy was 49.9 ± 21.3 ml/100 g/min. The mean cortical CBF under the craniectomy defect was 46.0 ± 21.7 ml/100 g/min. Patients who were dead at discharge had significantly lower postcraniectomy CBF under the craniectomy defect (30.1 ± 22.9 vs 50.6 ± 19.6 ml/100 g/min; p = 0.039). These patients also had lower global CBF (36.7 ± 23.4 vs 53.7 ± 19.7 ml/100 g/min; p = 0.09), as well as lower CBF for the ipsilateral (33.3 ± 27.2 vs 51.8 ± 19.7 ml/100 g/min; p = 0.07) and contralateral (36.7 ± 19.2 vs 55.2 ± 21.9 ml/100 g/min; p = 0.08) hemispheres, but these differences were not statistically significant. The patients who died also had significantly lower cerebral perfusion pressure (52 ± 17.4 vs 75.3 ± 10.9 mm Hg; p = 0.001).CONCLUSIONSIn the presence of global hypoperfusion, regional cerebral hypoperfusion under the craniectomy defect is associated with early mortality in patients with TBI. Further study is needed to determine the value of incorporating CBF studies into clinical decision making for severe traumatic brain injury.


2001 ◽  
Vol 93 (2) ◽  
pp. 351-353 ◽  
Author(s):  
Monica S. Vavilala ◽  
Joan S. Roberts ◽  
Anne E. Moore ◽  
David W. Newell ◽  
Arthur M. Lam

2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Marike Zwienenberg ◽  
Kee D Kim ◽  
Kiarash Shahlaie

The management of traumatic brain injury focuses on the prevention of second insults, which most often occur because of a supply/demand mismatch of the cerebral metabolism. The healthy brain has mechanisms of autoregulation to match the cerebral blood flow to the cerebral metabolic demand. After trauma, these mechanisms are disrupted, leaving the patient susceptible to episodes of hypotension, hypoxemia, and elevated intracranial pressure. Understanding the normal and pathologic states of the cerebral blood flow is critical for understanding the treatment choices for a patient with traumatic brain injury. In this chapter, we discuss the underlying physiologic principles that govern our approach to the treatment of traumatic brain injury. This review contains 3 figures, 1 table and 12 references Key Words: cerebral autoregulation, cerebral blood flow, cerebral metabolic rate, intracranial pressure, ischemia, reactivity, vasoconstriction, vasodilation, viscosity


Neurosurgery ◽  
2011 ◽  
Vol 68 (6) ◽  
pp. 1603-1610 ◽  
Author(s):  
Pierre Bouzat ◽  
Gilles Francony ◽  
Philippe Declety ◽  
Céline Genty ◽  
Affif Kaddour ◽  
...  

Abstract BACKGROUND: Detecting patients at risk for secondary neurological deterioration (SND) after mild to moderate traumatic brain injury is challenging. OBJECTIVE: To assess the diagnostic accuracy of transcranial Doppler (TCD) on admission in screening these patients. METHODS: This prospective, observational cohort study enrolled 98 traumatic brain injury patients with an initial Glasgow Coma Scale score of 9 to 15 whose initial computed tomography (CT) scan showed either absent or mild lesions according to the Trauma Coma Data Bank (TCDB) classification, ie, TCDB I and TCDB II, respectively. TCD measurements of the 2 middle cerebral arteries were obtained on admission under stable conditions in all patients. Neurological outcome was reassessed on day 7. RESULTS: Of the 98 patients, 21 showed SND, ie, a decrease of ≥ 2 points from the initial Glasgow Coma Scale or requiring any treatment for neurological deterioration. Diastolic cerebral blood flow velocities and pulsatility index measurements were different between patients with SND and patients with no SND. Using receiver-operating characteristic analysis, we found the best threshold limits to be 25 cm/s (sensitivity, 92%; specificity, 76%; area under curve, 0.93) for diastolic cerebral blood flow velocity and 1.25 (sensitivity, 90%; specificity, 91%; area under curve, 0.95) for pulsatility index. According to a recursive-partitioning analysis, TCDB classification and TCD measurements were the most discriminative among variables to detect patients at risk for SND. CONCLUSION: In patients with no severe brain lesions on CT after mild to moderate traumatic brain injury, TCD on admission, in complement with brain CT scan, could accurately screen patients at risk for SND.


Sign in / Sign up

Export Citation Format

Share Document