The Influence of Inhaled Nitric Oxide on Cerebral Blood Flow and Metabolism in a Child with Traumatic Brain Injury

2001 ◽  
Vol 93 (2) ◽  
pp. 351-353 ◽  
Author(s):  
Monica S. Vavilala ◽  
Joan S. Roberts ◽  
Anne E. Moore ◽  
David W. Newell ◽  
Arthur M. Lam
2001 ◽  
Vol 93 (2) ◽  
pp. 351-353 ◽  
Author(s):  
Monica S. Vavilala ◽  
Joan S. Roberts ◽  
Anne E. Moore ◽  
David W. Newell ◽  
Arthur M. Lam

2014 ◽  
Vol 120 (4) ◽  
pp. 880-889 ◽  
Author(s):  
Kotaro Kida ◽  
Kazuhiro Shirozu ◽  
Binglan Yu ◽  
Joseph B. Mandeville ◽  
Kenneth D. Bloch ◽  
...  

Abstract Background: Therapeutic hypothermia (TH) improves neurological outcomes after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Although nitric oxide prevents organ injury induced by ischemia and reperfusion, role of nitric oxide during TH after CPR remains unclear. In this article, the authors examined the impact of endogenous nitric oxide synthesis on the beneficial effects of hypothermia after CA/CPR. The authors also examined whether or not inhaled nitric oxide during hypothermia further improves outcomes after CA/CPR in mice treated with TH. Methods: Wild-type mice and mice deficient for nitric oxide synthase 3 (NOS3−/−) were subjected to CA at 37°C and then resuscitated with chest compression. Body temperature was maintained at 37°C (normothermia) or reduced to 33°C (TH) for 24 h after resuscitation. Mice breathed air or air mixed with nitric oxide at 10, 20, 40, 60, or 80 ppm during hypothermia. To evaluate brain injury and cerebral blood flow, magnetic resonance imaging was performed in wild-type mice after CA/CPR. Results: Hypothermia up-regulated the NOS3-dependent signaling in the brain (n = 6 to 7). Deficiency of NOS3 abolished the beneficial effects of hypothermia after CA/CPR (n = 5 to 6). Breathing nitric oxide at 40 ppm improved survival rate in hypothermia-treated NOS3−/− mice (n = 6) after CA/CPR compared with NOS3−/− mice that were treated with hypothermia alone (n = 6; P < 0.05). Breathing nitric oxide at 40 (n = 9) or 60 (n = 9) ppm markedly improved survival rates in TH-treated wild-type mice (n = 51) (both P < 0.05 vs. TH-treated wild-type mice). Inhaled nitric oxide during TH (n = 7) prevented brain injury compared with TH alone (n = 7) without affecting cerebral blood flow after CA/CPR (n = 6). Conclusions: NOS3 is required for the beneficial effects of TH. Inhaled nitric oxide during TH remains beneficial and further improves outcomes after CA/CPR. Nitric oxide breathing exerts protective effects after CA/CPR even when TH is ineffective due to impaired endogenous nitric oxide production.


2004 ◽  
Vol 21 (10) ◽  
pp. 1431-1442 ◽  
Author(s):  
Myung-Ja Ahn ◽  
Edward R. Sherwood ◽  
Donald S. Prough ◽  
Cheng Yie Lin ◽  
Douglas S. DeWitt

2011 ◽  
Vol 28 (5) ◽  
pp. 727-737 ◽  
Author(s):  
Claudia S. Robertson ◽  
Shankar P. Gopinath ◽  
Alex B. Valadka ◽  
Mai Van ◽  
Paul R. Swank ◽  
...  

2003 ◽  
Vol 23 (5) ◽  
pp. 582-588 ◽  
Author(s):  
Roman Hlatky ◽  
J. Clay Goodman ◽  
Alex B. Valadka ◽  
Claudia S. Robertson

Nitric oxide (NO) has important regulatory functions within the central nervous system. NO is oxidized in vivo to nitrate and nitrite (NOx). Measurement of these products gives an index of NO production. The purpose of this study was to examine the relation between the brain extracellular concentration of NO metabolites and cerebral blood flow (CBF) after severe traumatic brain injury. Using a chemiluminescence method, NOx concentrations were measured in 6,701 microdialysate samples obtained from 60 patients during the first 5 d after severe head injury. Regional and global values of CBF obtained by xenon-enhanced computed tomography were used for analyses. Dialysate NOx values were the highest within the first 24 h after brain trauma and gradually decreased over the 5 postinjury d (time effect, P < 0.001). Mean dialysate concentration of NOx was 15.5 ± 17.6 μmol/L (minimum 0.3, maximum 461 μmol/L) and 65% of samples were between 5 and 20 μmol/L. There was a significant relation between regional CBF and dialysate NOx levels (r2 = 0.316, P < 0.001). Dialysate NOx levels (9.5 ± 2.2 μmol/L) in patients with critical reduction of regional CBF (<18 mL · 100 g−1 · min−1) were significantly lower than in patients with normal CBF (18.6 ± 8.1 μmol/L; P < 0.001). This relation between the dialysate concentration of NOx and regional CBF suggests some role for NO in the abnormalities of CBF that occur after traumatic brain injury.


2018 ◽  
Vol 129 (1) ◽  
pp. 241-246 ◽  
Author(s):  
Aditya Vedantam ◽  
Claudia S. Robertson ◽  
Shankar P. Gopinath

OBJECTIVEFew studies have reported on changes in quantitative cerebral blood flow (CBF) after decompressive craniectomy and the impact of these measures on clinical outcome. The aim of the present study was to evaluate global and regional CBF patterns in relation to cerebral hemodynamic parameters in patients after decompressive craniectomy for traumatic brain injury (TBI).METHODSThe authors studied clinical and imaging data of patients who underwent xenon-enhanced CT (XeCT) CBF studies after decompressive craniectomy for evacuation of a mass lesion and/or to relieve intractable intracranial hypertension. Cerebral hemodynamic parameters prior to decompressive craniectomy and at the time of the XeCT CBF study were recorded. Global and regional CBF after decompressive craniectomy was measured using XeCT. Regional cortical CBF was measured under the craniectomy defect as well as for each cerebral hemisphere. Associations between CBF, cerebral hemodynamics, and early clinical outcome were assessed.RESULTSTwenty-seven patients were included in this study. The majority of patients (88.9%) had an initial Glasgow Coma Scale score ≤ 8. The median time between injury and decompressive surgery was 9 hours. Primary decompressive surgery (within 24 hours) was performed in the majority of patients (n = 18, 66.7%). Six patients had died by the time of discharge. XeCT CBF studies were performed a median of 51 hours after decompressive surgery. The mean global CBF after decompressive craniectomy was 49.9 ± 21.3 ml/100 g/min. The mean cortical CBF under the craniectomy defect was 46.0 ± 21.7 ml/100 g/min. Patients who were dead at discharge had significantly lower postcraniectomy CBF under the craniectomy defect (30.1 ± 22.9 vs 50.6 ± 19.6 ml/100 g/min; p = 0.039). These patients also had lower global CBF (36.7 ± 23.4 vs 53.7 ± 19.7 ml/100 g/min; p = 0.09), as well as lower CBF for the ipsilateral (33.3 ± 27.2 vs 51.8 ± 19.7 ml/100 g/min; p = 0.07) and contralateral (36.7 ± 19.2 vs 55.2 ± 21.9 ml/100 g/min; p = 0.08) hemispheres, but these differences were not statistically significant. The patients who died also had significantly lower cerebral perfusion pressure (52 ± 17.4 vs 75.3 ± 10.9 mm Hg; p = 0.001).CONCLUSIONSIn the presence of global hypoperfusion, regional cerebral hypoperfusion under the craniectomy defect is associated with early mortality in patients with TBI. Further study is needed to determine the value of incorporating CBF studies into clinical decision making for severe traumatic brain injury.


2018 ◽  
Author(s):  
Ryan Martin ◽  
Lara Zimmermann ◽  
Marike Zwienenberg ◽  
Kee D Kim ◽  
Kiarash Shahlaie

The management of traumatic brain injury focuses on the prevention of second insults, which most often occur because of a supply/demand mismatch of the cerebral metabolism. The healthy brain has mechanisms of autoregulation to match the cerebral blood flow to the cerebral metabolic demand. After trauma, these mechanisms are disrupted, leaving the patient susceptible to episodes of hypotension, hypoxemia, and elevated intracranial pressure. Understanding the normal and pathologic states of the cerebral blood flow is critical for understanding the treatment choices for a patient with traumatic brain injury. In this chapter, we discuss the underlying physiologic principles that govern our approach to the treatment of traumatic brain injury. This review contains 3 figures, 1 table and 12 references Key Words: cerebral autoregulation, cerebral blood flow, cerebral metabolic rate, intracranial pressure, ischemia, reactivity, vasoconstriction, vasodilation, viscosity


Stroke ◽  
2018 ◽  
Vol 49 (Suppl_1) ◽  
Author(s):  
Christopher G Favilla ◽  
Rodrigo M Forti ◽  
Ahmad Zamzam ◽  
John A Detre ◽  
Michael T Mullen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document