Delayed induction of mild hypothermia to reduce infarct volume after temporary middle cerebral artery occlusion in rats

1994 ◽  
Vol 80 (1) ◽  
pp. 112-119 ◽  
Author(s):  
Hiroshi Karibe ◽  
Jun Chen ◽  
Gregory J. Zarow ◽  
Steven H. Graham ◽  
Philip R. Weinstein

✓ Deep to moderate hypothermia (24° to 30°C) during focal cerebral ischemia reduces infarct volume but must be initiated before the onset of ischemia to be effective and has deleterious pulmonary, myocardial and neurological effects. It is not known whether mild hypothermia (32° to 33°C) protects against ischemic neuronal damage, whether hypothermia induced after the onset of ischemia has protective effects, or whether these effects are associated with alterations in cortical blood flow. In this study, mild whole-body hypothermia was induced in rats just before or 10, 30, or 60 minutes after the onset of 2 hours of temporary middle cerebral artery occlusion; rewarming began immediately after reversal of occlusion and normothermia was maintained throughout 22 hours of reperfusion. Infarct volume, measured 24 hours after the end of reperfusion, was significantly smaller in rats made hypothermic within 30 minutes after the onset of ischemia than in normothermic controls; hypothermia induced at 60 minutes of ischemia did not reduce infarct volume. Cortical blood flow, measured by laser Doppler ultrasound flowmetry, was not significantly different between groups during ischemia; however, postischemic cortical blood flow correlated positively with total infarct volume. These results indicate that mild hypothermia initiated during temporary focal ischemia in rats can reduce infarct volume without attenuating the reduction in cortical blood flow.

Stroke ◽  
1993 ◽  
Vol 24 (6) ◽  
pp. 864-870 ◽  
Author(s):  
H Yao ◽  
M D Ginsberg ◽  
B D Watson ◽  
R Prado ◽  
W D Dietrich ◽  
...  

2021 ◽  
pp. neurintsurg-2021-018239
Author(s):  
Gregory A Christoforidis ◽  
Niloufar Saadat ◽  
Mira Liu ◽  
Yong Ik Jeong ◽  
Steven Roth ◽  
...  

BackgroundSanguinate, a bovine PEGylated carboxyhemoglobin-based oxygen carrier with vasodilatory, oncotic and anti-inflammatory properties designed to release oxygen in hypoxic tissue, was tested to determine if it improves infarct volume, collateral recruitment and blood flow to the ischemic core in hyperacute middle cerebral artery occlusion (MCAO).MethodsUnder an IACUC approved protocol, 14 mongrel dogs underwent endovascular permanent MCAO. Seven received Sanguinate (8 mL/kg) intravenously over 10 min starting 30 min following MCAO and seven received a similar volume of normal saline. Relative cerebral blood flow (rCBF) was assessed using neutron-activated microspheres prior to MCAO, 30 min following MCAO and 30 min following intervention. Pial collateral recruitment was scored and measured by arterial arrival time (AAT) immediately prior to post-MCAO microsphere injection. Diffusion-weighted 3T MRI was used to assess infarct volume approximately 2 hours after MCAO.ResultsMean infarct volumes for control and Sanguinate-treated subjects were 4739 mm3 and 2585 mm3 (p=0.0443; r2=0.687), respectively. Following intervention, rCBF values were 0.340 for controls and 0.715 in the Sanguinate group (r2=0.536; p=0.0064). Pial collateral scores improved only in Sanguinate-treated subjects and AAT decreased by a mean of 0.314 s in treated subjects and increased by a mean of 0.438 s in controls (p<0.0276).ConclusionPreliminary results indicate that topload bolus administration of Sanguinate in hyperacute ischemic stroke significantly improves infarct volume, pial collateral recruitment and CBF in experimental MCAO immediately following its administration.


2018 ◽  
Vol 2 ◽  
pp. 239821281879482 ◽  
Author(s):  
Lisa A. Thow ◽  
Kathleen MacDonald ◽  
William M. Holmes ◽  
Keith W. Muir ◽  
I. Mhairi Macrae ◽  
...  

Background: Hyperglycaemia is associated with a worse outcome in acute ischaemic stroke patients; yet the pathophysiological mechanisms of hyperglycaemia-induced damage are poorly understood. We hypothesised that hyperglycaemia at the time of stroke onset exacerbates ischaemic brain damage by increasing the severity of the blood flow deficit. Methods: Adult, male Wistar rats were randomly assigned to receive vehicle or glucose solutions prior to permanent middle cerebral artery occlusion. Cerebral blood flow was assessed semi-quantitatively either 1 h after middle cerebral artery occlusion using 99mTc-D, L-hexamethylpropyleneamine oxime (99mTc-HMPAO) autoradiography or, in a separate study, using quantitative pseudo-continuous arterial spin labelling for 4 h after middle cerebral artery occlusion. Diffusion weighted imaging was performed alongside pseudo-continuous arterial spin labelling and acute lesion volumes calculated from apparent diffusion coefficient maps. Infarct volume was measured at 24 h using rapid acquisition with refocused echoes T2-weighted magnetic resonance imaging. Results: Glucose administration had no effect on the severity of ischaemia when assessed by either 99mTc-HMPAO autoradiography or pseudo-continuous arterial spin labelling perfusion imaging. In comparison to the vehicle group, apparent diffusion coefficient–derived lesion volume 2–4 h post-middle cerebral artery occlusion and infarct volume 24 h post-middle cerebral artery occlusion were significantly greater in the glucose group. Conclusions: Hyperglycaemia increased acute lesion and infarct volumes but there was no evidence that the acute blood flow deficit was exacerbated. The data reinforce the conclusion that the detrimental effects of hyperglycaemia are rapid, and that treatment of post-stroke hyperglycaemia in the acute period is essential but the mechanisms of hyperglycaemia-induced harm remain unclear.


Sign in / Sign up

Export Citation Format

Share Document