Postmortem analysis following 71 months of deep brain stimulation of the subthalamic nucleus for Parkinson disease

2008 ◽  
Vol 109 (2) ◽  
pp. 325-329 ◽  
Author(s):  
David A. Sun ◽  
Hong Yu ◽  
John Spooner ◽  
Armanda D. Tatsas ◽  
Thomas Davis ◽  
...  

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a clinically effective neurosurgical treatment for Parkinson disease. Tissue reaction to chronic DBS therapy and the definitive location of active stimulation contacts are best studied on a postmortem basis in patients who have undergone DBS. The authors report the postmortem analysis of STN DBS following 5 years and 11 months of effective chronic stimulation including the histologically verified location of the active contacts associated with bilateral implants. They also describe tissue response to intraoperative test passes with recording microelectrodes and stimulating semimacroelectrodes. The results indicated that 1) the neural tissue surrounding active and nonactive contacts responds similarly, with a thin glial capsule and foreign-body giant cell reaction surrounding the leads as well as piloid gliosis, hemosiderin-laden macrophages, scattered lymphocytes, and Rosenthal fibers; 2) there was evidence of separate tracts in the adjacent tissue for intraoperative microelectrode and semimacroelectrode passes together with reactive gliosis, microcystic degeneration, and scattered hemosiderin deposition; and 3) the active contacts used for ~ 6 years of effective bilateral DBS therapy lie in the zona incerta, just dorsal to the rostral STN. To the authors' knowledge, the period of STN DBS therapy herein described for Parkinson disease and subjected to postmortem analysis is the longest to date.

2020 ◽  
pp. 201-204
Author(s):  
Kyle T. Mitchell ◽  
Kristen A. Dodenhoff ◽  
Philip A. Starr ◽  
Jill L. Ostrem

DYT1 dystonia is a primary dystonia with potential for significant symptomatic improvement after bilateral deep brain stimulation (DBS) of the globus pallidus interna (GPi). GPi is the historical target of choice for this disease. This chapter presents a case of an adolescent with disabling generalized DYT1 dystonia who underwent bilateral subthalamic nucleus (STN) DBS as part of a prospective clinical trial. While limb and cervical dystonia dramatically improved with DBS, programming was limited by stimulation-induced bilateral limb dyskinesia, including in the left arm, which was previously unaffected by dystonia. After years of evolving symptoms and complex programming, bilateral interleaved settings using both a contact in motor STN and the most dorsal DBS contact in the zona incerta resulted in sustained, near-complete resolution of dystonia without side effects. This case illustrates the use of the STN as an effective DBS target for primary dystonia, although complex programming was necessary to mitigate stimulation-induced dyskinesia.


2020 ◽  
Vol 19 (3) ◽  
pp. 234-240
Author(s):  
Kyle T Mitchell ◽  
John R Younce ◽  
Scott A Norris ◽  
Samer D Tabbal ◽  
Joshua L Dowling ◽  
...  

Abstract BACKGROUND Subthalamic nucleus deep brain stimulation (STN DBS) is an effective adjunctive therapy for Parkinson disease. Studies have shown improvement of motor function but often exclude patients older than 75 yr. OBJECTIVE To determine the safety and effectiveness of STN DBS in patients 75 yr and older. METHODS A total of 104 patients (52 patients >75 yr old, 52 patients <75 yr old) with STN DBS were paired and retrospectively analyzed. The primary outcome was change in Unified Parkinson Disease Rating Scale (UPDRS) subscale III at 1 yr postoperatively, OFF medication. Secondary outcomes were changes in UPDRS I, II, and IV subscales and levodopa equivalents. Complications and all-cause mortality were assessed at 30 d and 1 yr. RESULTS Both cohorts had significant improvements in UPDRS III at 6 mo and 1 yr with no difference between cohorts. Change in UPDRS III was noninferior to the younger cohort. The cohorts had similar worsening in UPDRS I at 1 yr, no change in UPDRS II, similar improvement in UPDRS IV, and similar levodopa equivalent reduction. There were similar numbers of postoperative intracerebral hemorrhages (2/52 in each cohort, more severe in the older cohort) and surgical complications (4/52 in each cohort), and mortality in the older cohort was similar to an additional matched cohort not receiving DBS. CONCLUSION STN DBS provides substantial motor benefit and reduction in levodopa equivalents with a low rate of complications in older patients, which is also noninferior to the benefit in younger patients. STN DBS remains an effective therapy for those over 75 yr.


2008 ◽  
Vol 273 (1-2) ◽  
pp. 19-24 ◽  
Author(s):  
Jae-Hyeok Heo ◽  
Kyoung-Min Lee ◽  
Sun Ha Paek ◽  
Min-Jeong Kim ◽  
Jee-Young Lee ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Sofie Lundgren ◽  
Thomas Saeys ◽  
Fredrik Karlsson ◽  
Katarina Olofsson ◽  
Patric Blomstedt ◽  
...  

Deep brain stimulation of the subthalamic nucleus (STN-DBS) in patients with Parkinson's disease (PD) affects speech inconsistently. Recently, stimulation of the caudal zona incerta (cZi-DBS) has shown superior motor outcomes for PD patients, but effects on speech have not been systematically investigated. The aim of this study was to compare the effects of cZi-DBS and STN-DBS on voice intensity in PD patients. Mean intensity during reading and intensity decay during rapid syllable repetition were measured for STN-DBS and cZi-DBS patients (eight patients per group), before- and 12 months after-surgery on- and off-stimulation. For mean intensity, there were small significant differences on- versus off-stimulation in each group: 74.2 (2.0) dB contra 72.1 (2.2) dB () for STN-DBS, and 71.6 (4.1) dB contra 72.8 (3.4) dB () for cZi-DBS, with significant interaction (). Intensity decay showed no significant changes. The subtle differences found for mean intensity suggest that STN-DBS and cZi-DBS may influence voice intensity differently.


2006 ◽  
Vol 58 (suppl_1) ◽  
pp. ONS-96-ONS-102 ◽  
Author(s):  
Ramin Amirnovin ◽  
Ziv M. Williams ◽  
G. Rees Cosgrove ◽  
Emad N. Eskandar

Abstract OBJECTIVE: Subthalamic deep brain stimulation (DBS) has rapidly become the standard surgical therapy for medically refractory Parkinson disease. However, in spite of its wide acceptance, there is considerable variability in the technical approach. This study details our technique and experience in performing microelectrode recording (MER) guided subthalamic nucleus (STN) DBS in the treatment of Parkinson disease. METHODS: Forty patients underwent surgery for the implantation of 70 STN DBS electrodes. Stereotactic localization was performed using a combination of magnetic resonance and computed tomographic imaging. We used an array of three microelectrodes, separated by 2 mm, for physiological localization of the STN. The final location was selected based on MER and macrostimulation through the DBS electrode. RESULTS: The trajectory selected for the DBS electrode had an average pass through the STN of 5.6 ± 0.4 mm on the left and 5.7 ± 0.4 mm on the right. The predicted location was used in 42% of the cases but was modified by MER in the remaining 58%. Patients were typically discharged on the second postoperative day. Eighty-five percent of patients were sent home, 13% required short-term rehabilitation, and one patient required long-term nursing services. Seven complications occurred over 4 years. Four patients suffered small hemorrhages, one patient experienced a lead migration, one developed an infection of the pulse generator, and one patient suffered from a superficial cranial infection. CONCLUSION: Simultaneous bilateral MER-guided subthalamic DBS is a relatively safe and well-tolerated procedure. MER plays an important role in optimal localization of the DBS electrodes.


2007 ◽  
Vol 106 (4) ◽  
pp. 626-632 ◽  
Author(s):  
Jerzy L. Slowinski ◽  
John D. Putzke ◽  
Ryan J. Uitti ◽  
John A. Lucas ◽  
Margaret F. Turk ◽  
...  

Object The object of this study was to assess the results of unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) for management of advanced Parkinson disease (PD). Methods A clinical series of 24 patients (mean age 71 years, range 56–80 years) with medically intractable PD, who were undergoing unilateral magnetic resonance imaging–targeted, electrophysiologically guided STN DBS, completed a battery of qualitative and quantitative outcome measures preoperatively (baseline) and postoperatively, using a modified Core Assessment Program for Intracerebral Transplantations protocol. The mean follow-up period was 9 months. Statistically significant improvement was observed in the Unified Parkinson's Disease Rating Scale (UPDRS) Part II score (18%), the total UPDRS PART III score (31%), the contralateral UPDRS Part III score (63%), and scores for axial motor features (19%), contralateral tremor (88%), rigidity (60%), bradykinesia (54%), and dyskinesia (69%), as well as the Parkinson's Disease Quality of Life questionnaire score (15%) in the on-stimulation state compared with baseline. Ipsilateral symptoms improved by approximately 15% or less. Performance on the Purdue pegboard test improved in the contralateral hand in the on-stimulation state compared with the off-stimulation state (38%, p < 0.05). The daily levodopa-equivalent dose was reduced by 21% (p = 0.018). Neuropsychological tests revealed an improvement in mental flexibility and a trend toward reduced letter fluency. There were no permanent surgical complications. Of the 16 participants with symmetrical disease, five required implantation of the DBS unit on the second side. Conclusions Unilateral STN DBS is an effective and safe treatment for selected patients with advanced PD. Unilateral STN DBS provides improvement of contralateral motor symptoms of PD as well as quality of life, reduces requirements for medication, and possibly enhances mental flexibility. This method of surgical treatment may be associated with a reduced risk and may provide an alternative to bilateral STN DBS for PD, especially in older patients or patients with asymmetry of parkinsonism.


2019 ◽  
Vol 33 (4) ◽  
pp. 545-549 ◽  
Author(s):  
Fredrik Karlsson ◽  
Elin Malinova ◽  
Katarina Olofsson ◽  
Patric Blomstedt ◽  
Jan Linder ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Fredrik Karlsson ◽  
Elin Unger ◽  
Sofia Wahlgren ◽  
Patric Blomstedt ◽  
Jan Linder ◽  
...  

The hypokinetic dysarthria observed in Parkinson's disease (PD) affects the range, speed, and accuracy of articulatory gestures in patients, reducing the perceived quality of speech acoustic output in continuous speech. Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) and of the caudal zona incerta (cZi-DBS) are current surgical treatment options for PD. This study aimed at investigating the outcome of STN-DBS (7 patients) and cZi-DBS (7 patients) in two articulatory diadochokinesis tasks (AMR and SMR) using measurements of articulation rate and quality of the plosive consonants (using the percent measurable VOT metric). The results indicate that patients receiving STN-DBS increased in articulation rate in the Stim-ON condition in the AMR task only, with no effect on production quality. Patients receiving cZi-DBS decreased in articulation rate in the Stim-ON condition and further showed a reduction in production quality. The data therefore suggest that cZi-DBS is more detrimental for extended articulatory movements than STN-DBS.


Sign in / Sign up

Export Citation Format

Share Document