Inhibition of Glucose Oxidation and Fatty Acid Synthesis in Liver Slices from Fed, Fasted and Fasted-Refed Rats by Glucagon, Epinephrine and Cyclic Adenosine-3',5'-monophosphate

1973 ◽  
Vol 143 (2) ◽  
pp. 379-381 ◽  
Author(s):  
A. W. Meikle ◽  
G. J. Klain ◽  
J. P. Hannon
1968 ◽  
Vol 108 (4) ◽  
pp. 655-661 ◽  
Author(s):  
Alan G. Goodridge

Incorporation of [U−14C]glucose into carbon dioxide, glycogen, cholesterol and fatty acids and of 3H2O into cholesterol and fatty acids was measured in liver slices from embryos and growing chicks. During the embryonic period, rates of incorporation were low and stable for all pathways. Fatty acid synthesis and glucose oxidation increased promptly when the chicks were fed, reaching plateau levels within 6 days. Cholesterol and glycogen synthesis increased only slightly when the birds were fed. After 5 and 11 days respectively, cholesterol and glycogen synthesis began to increase rapidly. The rate of glucose oxidation in liver slices from 4-week-old chicks was 20-fold greater than in slices of embryonic liver; glycogen, cholesterol and fatty acid synthesis had increased approximately 100-, 300- and 1000-fold respectively. The increase in the metabolism of [U−14C]glucose that occurred after hatching was probably due to the change from a high-fat non-carbohydrate diet (yolk) to a high-carbohydrate low-fat diet (mash).


1953 ◽  
Vol 205 (1) ◽  
pp. 401-408
Author(s):  
Grace Medes ◽  
Morris A. Spirtes ◽  
Sidney Weinhouse

1970 ◽  
Vol 118 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Alan G. Goodridge

1. A single glucose meal stimulated the incorporation of acetate into fatty acids in liver slices. If the glucose was added in vitro, it had no effect. Fructose and glycerol in vitro markedly stimulated fatty acid synthesis from acetate. Fructose and glycerol probably by-passed a rate-controlling reaction between glucose and triose phosphate. This reaction may have been stimulated by glucose administered in vivo. 2. The stimulation of fatty acid synthesis caused by fructose did not require the synthesis of enzyme, thus indicating that fatty acid-synthesizing enzymes were present in a latent form in the livers from unfed chicks.


1982 ◽  
Vol 206 (3) ◽  
pp. 577-586 ◽  
Author(s):  
James P. Robertson ◽  
Anne Faulkner ◽  
Richard G. Vernon

1. The following were measured in adipose-tissue pieces, obtained from 7–9 month-old sheep, before or after the tissue pieces had been maintained in tissue culture for 24 h: the rates of synthesis from glucose of fatty acids, acylglycerol glycerol, pyruvate and lactate; the rate of glucose oxidation to CO2; the rate of glucose oxidation via the pentose phosphate pathway; the activities of hexokinase, glucose 6-phosphate dehydrogenase, phosphofructokinase, pyruvate kinase, pyruvate dehydrogenase and ATP citrate lyase; the intra- and extra-cellular water content; the concentration of various metabolites and ATP, ADP and AMP. 2. The proportion of glucose carbon converted into the various products in sheep adipose tissue differs markedly from that observed in rat adipose tissue. 3. There was a general increase in the rate of glucose utilization by the adipose-tissue pieces after maintenance in tissue culture; largest changes were seen in the rates of glycolysis and fatty acid synthesis from glucose. These increases are paralleled by an increase in pyruvate kinase activity. There was no change in the activities of the other enzymes as measured, although the net flux through all the enzymes increased. 4. Incubation of fresh adipose-tissue pieces for 2–6h led to an increase in the affinity of pyruvate kinase for phosphoenolpyruvate. 5. The rate of pyruvate production by glycolysis was greater than the activity of pyruvate dehydrogenase of the tissue. 6. The results suggest that both pyruvate kinase and pyruvate dehydrogenase have important roles in restricting the utilization of glucose carbon for fatty acid synthesis in sheep adipose tissue.


2009 ◽  
Vol 35 (10) ◽  
pp. 1942-1947
Author(s):  
Wan-Kun SONG ◽  
Ming-Xi ZHU ◽  
Yang-Lin ZHAO ◽  
Jing WANG ◽  
Wen-Fu LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document