Microstructural characterization of a carbonitrided heat resisting alloy using focused ion beam-based techniques

2005 ◽  
Vol 22 (3) ◽  
pp. 351-358 ◽  
Author(s):  
S. Ford ◽  
D.J. Young ◽  
D. McGrouther ◽  
P.R. Munroe
2014 ◽  
Vol 61 (1) ◽  
pp. 109-120 ◽  
Author(s):  
J. A. Taillon ◽  
C. Pellegrinelli ◽  
Y. Huang ◽  
E. D. Wachsman ◽  
L. G. Salamanca-Riba

2000 ◽  
Vol 6 (S2) ◽  
pp. 528-529
Author(s):  
C. Urbanik Shannon ◽  
L. A. Giannuzzi ◽  
E. M. Raz

Automated specimen preparation for transmission electron microscopy has the obvious advantage of saving personnel time. While some people may perform labor intensive specimen preparation techniques quickly, automated specimen preparation performed in a timely and reproducible fashion can significantly improve the throughput of specimens in an industrial laboratory. The advent of focused ion beam workstations for the preparation of electron transparent membranes has revolutionized TEM specimen preparation. The FIB lift-out technique is a powerful specimen preparation method. However, there are instances where the “traditional” FIB method of specimen preparation may be more suitable. The traditional FIB method requires that specimens must be prepared so that the area of interest is as thin as possible (preferably less than 50 μm) prior to FIB milling. Automating the initial specimen preparation for brittle materials (e.g., Si wafers) may be performed using the combination of cleaving and sawing techniques as described below.


2014 ◽  
Vol 20 (6) ◽  
pp. 1798-1804 ◽  
Author(s):  
Ji Woo Kim ◽  
Kee-Bum Kim ◽  
Jae-Hyeok Shim ◽  
Young Whan Cho ◽  
Kyu Hwan Oh

AbstractThe dehydrogenated microstructure of the lithium borohydride-yttrium hydride (LiBH4-YH3) composite obtained at 350°C under 0.3 MPa of hydrogen and static vacuum was investigated by transmission electron microscopy combined with a focused ion beam technique. The dehydrogenation reaction between LiBH4 and YH3 into LiH and YB4 takes place under 0.3 MPa of hydrogen, which produces YB4 nano-crystallites that are uniformly distributed in the LiH matrix. This microstructural feature seems to be beneficial for rehydrogenation of the dehydrogenation products. On the other hand, the dehydrogenation process is incomplete under static vacuum, leading to the unreacted microstructure, where YH3 and YH2 crystallites are embedded in LiBH4 matrix. High resolution imaging confirmed the presence of crystalline B resulting from the self-decomposition of LiBH4. However, Li2B12H12, which is assumed to be present in the LiBH4 matrix, was not clearly observed.


Wear ◽  
2009 ◽  
Vol 266 (11-12) ◽  
pp. 1237-1240 ◽  
Author(s):  
A. Flink ◽  
R. M'Saoubi ◽  
F. Giuliani ◽  
J. Sjölén ◽  
T. Larsson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document