1700657: Impact of chloride concentration on ligand substitution reactions of zinc(II) complexes with biologically relevant nitrogen nucleophiles-ESI

2018 ◽  
Vol 43 (3-4) ◽  
pp. 244-253 ◽  
Author(s):  
Enisa Selimović ◽  
Tanja Soldatović

The mole-ratio method was used to determine the metal–ligand stoichiometry between [ZnCl2(en)] and [ZnCl2(terpy)] (where en = 1,2-diaminoethane or ethylenediamine and terpy = 2,2′:6′,2″-terpyridine) and imidazole at pH 7.2 in the presence of different chloride concentrations. The results indicated step-wise formation of 1:1 and 1:2 complexes in the presence of 0.010 M NaCl and 1:1 complexes in the presence of 0.001 M NaCl for the [ZnCl2(en)] complex. These results are correlated with additional coordination of chlorides in the first coordination sphere and with changes in coordination geometry. In the presence of 0.001 M NaCl the five-coordinate complex anion [ZnCl3(en)]- is formed initially and then a substitution reaction with imidazole occurs. In the presence of 0.010 M NaCl the octahedral complex anion [ZnCl4(en)]2- is formed. Additional coordination of chloride in the [ZnCl2(terpy)] complex is not found and the metal–ligand stoichiometry is 1:2. The kinetics of ligand substitution reactions of zinc(II) complexes and biologically relevant nitrogen nucleophiles such as imidazole, 1,2,3-triazole and L-histidine were investigated at pH 7.2 as a function of nucleophile concentration in the presence of 0.001 M and 0.010 M NaCl. The reactions were followed under pseudo first-order conditions by UV-Vis spectrophotometry. The substitution reactions included two steps of consecutive displacement of chlorido ligands with changes only in the coordination geometry of the [ZnCl2(en)] complex. The order of reactivity of the investigated nucleophiles for the first reaction step towards both complexes was L-histidine > 1,2,3-triazole > imidazole, while in the presence of 0.010 M NaCl the most reactive ligand was 1,2,3-triazole towards the [ZnCl2(en)] complex.


2019 ◽  
Vol 48 (18) ◽  
pp. 5987-6002 ◽  
Author(s):  
A. Paden King ◽  
Hendryck A. Gellineau ◽  
Samantha N. MacMillan ◽  
Justin J. Wilson

A subset of fluorinated Co(iii) Schiff base complexes was synthesized, and their structural, ligand exchange, and anticancer properties were investigated.


2017 ◽  
Vol 46 (41) ◽  
pp. 14256-14263 ◽  
Author(s):  
Julie Urgiles ◽  
Sarah R. Nathan ◽  
Samantha N. MacMillan ◽  
Justin J. Wilson

Nitrido-bridged ruthenium complexes are synthesized via ligand substitution reactions and evaluated for mitochondrial calcium uptake inhibition.


1980 ◽  
Vol 19 (7) ◽  
pp. 2162-2165 ◽  
Author(s):  
Jens Martinsen ◽  
Michael Miller ◽  
Daria Trojan ◽  
D. A. Sweigart

Sign in / Sign up

Export Citation Format

Share Document