anticancer properties
Recently Published Documents





2022 ◽  
Vol 12 ◽  
Faez Iqbal Khan ◽  
Fakhrul Hassan ◽  
Dakun Lai

Various metabolites identified with therapeutic mushrooms have been found from different sources and are known to have antibacterial, antiviral, and anticancer properties. Over thousands soil growth-based mushroom metabolites have been discovered, and utilized worldwide to combat malignancy. In this study, psilocybin-mushroom that contains the psychedelic compounds such as psilacetin, psilocin, and psilocybine were screened and found to be inhibitors of SARS-CoV-2 Mprotease. It has been found that psilacetin, psilocin, and psilocybine bind to Mprotease with −6.0, −5.4, and −5.8 kcal/mol, respectively. Additionally, the psilacetin was found to inhibit human interleukin-6 receptors to reduce cytokine storm. The binding of psilacetin to Mprotease of SARS-CoV-2 and human interleukin-6 receptors changes the structural dynamics and Gibbs free energy patterns of proteins. These results suggested that psilocybin-mushroom could be utilized as viable potential chemotherapeutic agents for SARS-CoV-2.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 463
Luca Pozzetti ◽  
Roberta Ibba ◽  
Sara Rossi ◽  
Orazio Taglialatela-Scafati ◽  
Donatella Taramelli ◽  

The potential of natural and synthetic chalcones as therapeutic leads against different pathological conditions has been investigated for several years, and this class of compounds emerged as a privileged chemotype due to its interesting anti-inflammatory, antimicrobial, antiviral, and anticancer properties. The objective of our study was to contribute to the investigation of this class of natural products as anti-leishmanial agents. We aimed at investigating the structure–activity relationships of the natural chalcone lophirone E, characterized by the presence of benzofuran B-ring, and analogues on anti-leishmania activity. Here we describe an effective synthetic strategy for the preparation of the natural chalcone lophirone E and its application to the synthesis of a small set of chalcones bearing different substitution patterns at both the A and heterocyclic B rings. The resulting compounds were investigated for their activity against Leishmania infantum promastigotes disclosing derivatives 1 and 28a,b as those endowed with the most interesting activities (IC50 = 15.3, 27.2, 15.9 μM, respectively). The synthetic approaches here described and the early SAR investigations highlighted the potential of this class of compounds as antiparasitic hits, making this study worthy of further investigation.

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Beema Shafreen Rajamohamed ◽  
Seema Siddharthan ◽  
Velmurugan Palanivel ◽  
Mohanavel Vinayagam ◽  
Vijayanand Selvaraj ◽  

The synthesis of silver nanoparticles has been gaining more attention in recent years due to their small size and high stability. For this study, silver nanoparticles were biosynthesized from leaf extract of the medicinal plant (N. arbor-tristis). Vitally, the shrub with tremendous medicinal usage was diversely observed in South Asia and South East Asia. The synthesized silver nanoparticles were characterized by color visualization, ultraviolet-visible spectrophotometry (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), field emission-scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and dynamic light scattering (DLS) technique. A sharp peak at 427 nm for biosynthesized nanoparticles was obtained using UV-Vis, which represents surface plasmon resonance. Thus, characterization techniques showed the green synthesis of AgNPs leads to the fabrication of spherical shape particles with a size of 67 nm. Furthermore, AgNPs were subjected to antibiofilm studies against Candida albicans and it was observed that 0.5 μg mL−1 of AgNPs significantly reduced 50% of biofilm formation. These biosynthesized nanoparticles also showed a considerable reduction in viability of HeLa cells at 0.5 μg mL−1. The morphological changes induced by AgNPs were observed by AO/EB staining. The toxic effect of AgNPs was studied using brine shrimp as a model system. Therefore, it is envisaged that further investigation with these AgNPs can replace toxic chemicals, assist in the development of biomedical implants that can prevent biofilm formation, and avoid infections due to C. albicans.

2022 ◽  
Youssef T. Abdou ◽  
Sheri M. Saleeb ◽  
Khaled Abdel-Raouf ◽  
Mohamed Allam ◽  
Mustafa Adel ◽  

Peptide-based drugs have emerged as highly selective and potent cancer therapy. Cancer is one of the leading causes of death worldwide. Multiple approaches have been developed towards cancer treatment, including chemotherapy, radiation, and hormonal therapy; however, such procedures' non-specificity, toxicity, and inefficiency present a hurdle. In this study, we developed a support vector machine (SVM) model to detect the potential anticancer properties of novel peptides through scanning the American University in Cairo Red Sea metagenomics library. Further, we performed in silico studies on a novel 37-mer antimicrobial peptide mined from SVM pipeline analysis. This peptide was further modified to enhance its anticancer activity, analyzed for gene oncology, and subsequently synthesized. The anticancer properties of this 37-mer peptide were evaluated via cellular viability and cell morphology of SNU449, HepG2, SKOV3, and HeLa cells, using MTT assay. Furthermore, we assessed the migration capability of SNU449 and SKOV3 via scratch wound healing assay. Moreover, the targeted selectivity of the peptide for cancerous cells was assessed by testing its hemolytic activity on human erythrocytes. The peptide caused a significant reduction in cellular viability and critically affected the morphology of hepatocellular carcinoma (SNU449 and HepG2), ovarian cancer (SKOV3), and to a limited extent, cervical cancer cell lines (HeLa), in addition to decreasing viability of human fibroblast cell line (1Br-hTERT). Peptide treatment significantly affected the proliferation and migration ability of SNU449 and SKOV3 cells. Annexin V assay was used to evaluate induced cell death upon peptide treatment, attributing programmed cell death (Apoptosis) as the main cause of cell death in SNU449 cells. Finally, we established broad-spectrum antimicrobial properties of the peptide on both gram-positive and gram-negative bacterial strains. Thus, these findings infer the novelty of the peptide as a potential anticancer and antimicrobial agent.

2022 ◽  
Joshua A Walker ◽  
Noah Hamlish ◽  
Avery Tytla ◽  
Daniel D Brauer ◽  
Matthew B Francis ◽  

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are peptide-derived natural products that include the FDA-approved analgesic ziconotide1,2 as well as compounds with potent antibiotic, antiviral, and anticancer properties.3 RiPP enzymes known as cyclodehydratases and dehydrogenases represent an exceptionally well-studied enzyme class.3 These enzymes work together to catalyze intramolecular, interresidue condensation3,4 and aromatization reactions that install oxazoline/oxazole and thiazoline/thiazole heterocycles within ribosomally produced polypeptide chains. Here we show that the previously reported enzymes MicD-F and ArtGox accept backbone-modified monomers, including aramids and beta-amino acids, within leader-free polypeptides, even at positions immediately preceding or following the site of cyclization/dehydrogenation. The products are sequence-defined chemical polymers with multiple, diverse, non-alpha-amino acid subunits. We show further that MicD-F and ArtGox can install heterocyclic backbones within protein loops and linkers without disrupting the native tertiary fold. Calculations reveal the extent to which these heterocycles restrict conformational space; they also eliminate a peptide bond. Both features could improve the stability or add function to linker sequences now commonplace in emerging biotherapeutics. Moreover, as thiazoles and thiazoline heterocycles are replete in natural products,5,6,7 small molecule drugs,8,9 and peptide-mimetic therapeutics,10 their installation in protein-based biotherapeutics could improve or augment performance, activity, stability, and/or selectivity. This work represents a general strategy to expand the chemical diversity of the proteome beyond and in synergy with what can now be accomplished by expanding the genetic code.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 427
Ashwini Naganthran ◽  
Gayathiri Verasoundarapandian ◽  
Farah Eryssa Khalid ◽  
Mas Jaffri Masarudin ◽  
Azham Zulkharnain ◽  

Silver nanoparticles (AgNPs) have been employed in various fields of biotechnology due to their proven properties as an antibacterial, antiviral and antifungal agent. AgNPs are generally synthesized through chemical, physical and biological approaches involving a myriad of methods. As each approach confers unique advantages and challenges, a trends analysis of literature for the AgNPs synthesis using different types of synthesis were also reviewed through a bibliometric approach. A sum of 10,278 publications were analyzed on the annual numbers of publication relating to AgNPs and biological, chemical or physical synthesis from 2010 to 2020 using Microsoft Excel applied to the Scopus publication database. Furthermore, another bibliometric clustering and mapping software were used to study the occurrences of author keywords on the biomedical applications of biosynthesized AgNPs and a total collection of 224 documents were found, sourced from articles, reviews, book chapters, conference papers and reviews. AgNPs provides an excellent, dependable, and effective solution for seven major concerns: as antibacterial, antiviral, anticancer, bone healing, bone cement, dental applications and wound healing. In recent years, AgNPs have been employed in biomedical sector due to their antibacterial, antiviral and anticancer properties. This review discussed on the types of synthesis, how AgNPs are characterized and their applications in biomedical field.

Nicolò Mauro ◽  
Mara Andrea Utzeri ◽  
Alice Sciortino ◽  
Fabrizio Messina ◽  
Marco Cannas ◽  

2022 ◽  
Vol 25 ◽  
pp. 24-40
Emilio Mateev ◽  
Maya Georgieva ◽  
Alexander Zlatkov

With the significant increase of patients suffering from different types of cancer, it is evident that prompt measures in the development of novel and effective agents need to be taken. Pyrrole moiety has been found in various active compounds with anti-inflammatory, antiseptic, antibacterial, lipid-lowering and anticancer properties. Recent advances in the exploration of highly active and selective cytotoxic structures containing pyrrole motifs have shown promising data for future investigations. Accordingly, this review presents an overview of recent developments in the pyrrole derivatives as anticancer agents, with a main focus towards the key moieties required for the anti-tumor activities. Pyrrole molecules comprising prominent targeting capacities against microtubule polymerization, tyrosine kinases, cytochrome p450 family 1, histone deacetylase and bcl-2 proteins were reported. In addition, several mechanisms of action, such as apoptosis, cell cycle arrest, inhibiting kinases, angiogenesis, disruption of cell migration, modulation of nuclear receptor responsiveness and others were analyzed. Furthermore, in most of the discussed cases we provided synthesis schemes of the mentioned molecules. Overall, the utilization of pyrrole scaffold for the design and synthesis of novel anticancer drugs could be a promising approach for future investigations.  

Sign in / Sign up

Export Citation Format

Share Document