scholarly journals Correct solvability and representation of the solutions of Volterra integro-differential equations with exponential-fractional kernels

2019 ◽  
Vol 488 (5) ◽  
pp. 476-480
Author(s):  
V. V. Vlasov ◽  
N. A. Rautian

For abstract integro-differential equations with unbounded operator coefficients in a Hilbert space, we study the well-posed solvability of initial problems and carry out spectral analysis of the operator functions that are symbols of these equations. This allows us to represent the strong solutions of these equations as series in exponentials corresponding to points of the spectrum of operator functions. The equations under study are the abstract form of linear integro-partial differential equations arising in viscoelasticity and several other important applications.

2018 ◽  
Vol 64 (1) ◽  
pp. 60-73
Author(s):  
V V Vlasov ◽  
N A Rautian

We study the correct solvability of initial problems for abstract integrodifferential equations with unbounded operator coefficients in a Hilbert space. We do spectral analysis of operator-functions that are symbols of such equations. The equations under consideration are an abstract form of linear integrodifferential equations with partial derivatives arising in viscoelasticity theory and having a number of other important applications. We describe localization and structure of the spectrum of operatorfunctions that are symbols of such equations.


2005 ◽  
Vol 2005 (2) ◽  
pp. 167-173 ◽  
Author(s):  
Khairia El-Said El-Nadi

We consider some stochastic difference partial differential equations of the form du(x,t,c)=L(x,t,D)u(x,t,c)dt+M(x,t,D)u(x,t−a,c)dw(t), where L(x,t,D) is a linear uniformly elliptic partial differential operator of the second order, M(x,t,D) is a linear partial differential operator of the first order, and w(t) is a Weiner process. The existence and uniqueness of the solution of suitable mixed problems are studied for the considered equation. Some properties are also studied. A more general stochastic problem is considered in a Hilbert space and the results concerning stochastic partial differential equations are obtained as applications.


2020 ◽  
pp. 1-41
Author(s):  
Stefan Neukamm ◽  
Mario Varga ◽  
Marcus Waurick

Many time-dependent linear partial differential equations of mathematical physics and continuum mechanics can be phrased in the form of an abstract evolutionary system defined on a Hilbert space. In this paper we discuss a general framework for homogenization (periodic and stochastic) of such systems. The method combines a unified Hilbert space approach to evolutionary systems with an operator theoretic reformulation of the well-established periodic unfolding method in homogenization. Regarding the latter, we introduce a well-structured family of unitary operators on a Hilbert space that allows to describe and analyze differential operators with rapidly oscillating (possibly random) coefficients. We illustrate the approach by establishing periodic and stochastic homogenization results for elliptic partial differential equations, Maxwell’s equations, and the wave equation.


Sign in / Sign up

Export Citation Format

Share Document