scholarly journals Spectral analysis of the Koopman operator for partial differential equations

2020 ◽  
Vol 30 (11) ◽  
pp. 113131
Author(s):  
Hiroya Nakao ◽  
Igor Mezić
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
J. Nathan Kutz ◽  
J. L. Proctor ◽  
S. L. Brunton

We consider the application of Koopman theory to nonlinear partial differential equations and data-driven spatio-temporal systems. We demonstrate that the observables chosen for constructing the Koopman operator are critical for enabling an accurate approximation to the nonlinear dynamics. If such observables can be found, then the dynamic mode decomposition (DMD) algorithm can be enacted to compute a finite-dimensional approximation of the Koopman operator, including its eigenfunctions, eigenvalues, and Koopman modes. We demonstrate simple rules of thumb for selecting a parsimonious set of observables that can greatly improve the approximation of the Koopman operator. Further, we show that the clear goal in selecting observables is to place the DMD eigenvalues on the imaginary axis, thus giving an objective function for observable selection. Judiciously chosen observables lead to physically interpretable spatio-temporal features of the complex system under consideration and provide a connection to manifold learning methods. Our method provides a valuable intermediate, yet interpretable, approximation to the Koopman operator that lies between the DMD method and the computationally intensive extended DMD (EDMD). We demonstrate the impact of observable selection, including kernel methods, and construction of the Koopman operator on several canonical nonlinear PDEs: Burgers’ equation, the nonlinear Schrödinger equation, the cubic-quintic Ginzburg-Landau equation, and a reaction-diffusion system. These examples serve to highlight the most pressing and critical challenge of Koopman theory: a principled way to select appropriate observables.


2019 ◽  
Vol 488 (5) ◽  
pp. 476-480
Author(s):  
V. V. Vlasov ◽  
N. A. Rautian

For abstract integro-differential equations with unbounded operator coefficients in a Hilbert space, we study the well-posed solvability of initial problems and carry out spectral analysis of the operator functions that are symbols of these equations. This allows us to represent the strong solutions of these equations as series in exponentials corresponding to points of the spectrum of operator functions. The equations under study are the abstract form of linear integro-partial differential equations arising in viscoelasticity and several other important applications.


Sign in / Sign up

Export Citation Format

Share Document