scholarly journals First report of Phytophthora rot of ginger (Zingiber officinale) caused by Phytophthora citrophthora in Japan.

2011 ◽  
Vol 77 (4) ◽  
pp. 299-303
Author(s):  
M. YAMAZAKI ◽  
H. MATSUOKA ◽  
K. YANO ◽  
Y. MORITA ◽  
S. UEMATSU ◽  
...  
Plant Disease ◽  
2006 ◽  
Vol 90 (9) ◽  
pp. 1260-1260 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
D. Minerdi ◽  
M. L. Gullino

Penstemon barbatus (Cav.) Roth (synonym Chelone barbata), used in parks and gardens and sometimes grown in pots, is a plant belonging to the Scrophulariaceae family. During the summers of 2004 and 2005, symptoms of a root rot were observed in some private gardens located in Biella Province (northern Italy). The first symptoms resulted in stunting, leaf discoloration followed by wilt, root and crown rot, and eventually, plant death. The diseased tissue was disinfested for 1 min in 1% NaOCl and plated on a semiselective medium for Oomycetes (4). The microorganism consistently isolated from infected tissues, grown on V8 agar at 22°C, produced hyphae with a diameter ranging from 4.7 to 5.2 μm. Sporangia were papillate, hyaline, measuring 43.3 to 54.4 × 26.7 to 27.7 μm (average 47.8 × 27.4 μm). The papilla measured from 8.8 to 10.9 μm. These characteristics were indicative of a Phytophthora species. The ITS region (internal transcribed spacer) of rDNA was amplified using primers ITS4/ITS6 (3) and sequenced. BLASTn analysis (1) of the 800 bp obtained showed a 100% homology with Phytophthora citrophthora (R. & E. Sm.) Leonian. The nucleotide sequence has been assigned GenBank Accession No. DQ384611. For pathogenicity tests, the inoculum of P. citrophthora was prepared by growing the pathogen on autoclaved wheat and hemp kernels (2:1) at 25°C for 20 days. Healthy plants of P. barbatus cv. Nano Rondo, 6 months old, were grown in 3-liter pots (one plant per pot) using a steam disinfested substrate (peat/pomix/pine bark/clay 5:2:2:1) in which 200 g of kernels per liter of substrate were mixed. Noninoculated plants served as control treatments. Three replicates were used. Plants were maintained at 15 to 20°C in a glasshouse. The first symptoms, similar to those observed in the gardens, developed 21 days after inoculation, and P. citrophthora was consistently reisolated from infected plants. Noninoculated plants remained healthy. The pathogenicity test was carried out twice with similar results. A nonspecified root and crown rot of Penstemon spp. has been reported in the United States. (2). To our knowledge, this is the first report of P. citrophthora on P. barbatus in Italy as well as in Europe. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997 (2) F. E. Brooks and D. M. Ferrin. Plant Dis. 79:212, 1995. (3) D. E. L. Cooke and J. M. Duncan. Mycol. Res. 101:667, 1997. (4) H. Masago et al. Phytopathology 67:425, 1977.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 1011-1011 ◽  
Author(s):  
Y. Li ◽  
L. G. Mao ◽  
D. D. Yan ◽  
X. M. Liu ◽  
T. T. Ma ◽  
...  

Ginger (Zingiber officinale Roscoe) is an important commercial crop planted on more than 13,000 ha annually in Anqiu city, Shandong Province, China. From 2010 to 2011, the incidence of Pythium soft rot disease on cv. Laiwu Big Ginger reached 40 to 75% in Anqiu and yield losses of up to 60% were observed. The disease symptoms included brown spots on ginger rhizomes followed by soft rot, stems and leaves above ground becoming withered and yellow, and water soaking on the collar region. The soft rot did not produce offensive odors, which is different from bacterial rots (2). Forty symptomatic rhizomes were sampled from eight farms. Martin's method (1) was used to isolate the pathogen. Ten pieces from each rhizome were washed with sterile distilled water for 30 s and plated on Martin's selective medium at 26°C in a chamber without light. Colonies grew with cottony aerial mycelium. Main hyphae were 5.7 to 9.6 μm wide. Globose sporangia consisting of terminal complexes of swollen hyphal branches were 11.4 to 18.3 μm wide. The average diameter of zoospores was 9.2 μm. The oogonia were globose and smooth, with a diameter of 21 to 33 μm. The sequences of the rRNA gene internal transcribed spacer (ITS) regions 1 and 2 and the 5.8S gene of five isolates were amplified using primers ITS1 and ITS4 (4), and the nucleotide sequence was the same as isolate No. 2, which was deposited in GenBank (Accession No. KC594034). A BLAST search showed 99% identity with Pythium aphanidermatum strain 11-R-8 (Accession No. JQ898455.1). Pathogenicity tests of five isolates were carried out in a greenhouse. Sixty plants (cv. Laiwu Big Ginger) were grown for 30 days in plastic pots (diameter 20 cm) in sandy soil (pH 5.48) and inoculated. Ten plants were used as untreated controls. Five isolates were grown on Martin's liquid medium for 72 h and the spores were harvested in sterile distilled water. Aqueous spore suspensions of the five isolates were adjusted with deionized water to 1 × 108 CFU/ml and injected with a syringe into the soil around the rhizome of the plants. Plants were then placed in the greenhouse at 24 to 26°C and assessed for rhizome rot on the 14th day after inoculation. The inoculated isolates were recovered from the diseased rhizomes, confirming their pathogenicity. To our knowledge, this is the first report of ginger Pythium soft rot caused by P. aphanidermatum in China. Ginger Pythium soft rot caused by P. myriotylum is reported in Taiwan (3). References: (1) F. N. Martin. Page 39 in: The Genus Pythium. American Phytopathological Society, St. Paul, MN, 1992. (2) E. E. Trujillo. Diseases of Ginger (Zingiber officinale) in Hawaii, Circular 62, Hawaii Agricultural Experiment Station, University of Hawaii, December 1964. (3) P. H. Wang. Lett. Appl. Microbiol. 36:116, 2003. (4) T. J. White. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 282-282 ◽  
Author(s):  
Y. Li ◽  
L. D. Chi ◽  
L. G. Mao ◽  
D. D. Yan ◽  
Z. F. Wu ◽  
...  

Ginger (Zingiber officinale Roscoe) is an important commercial crop that is planted in 60,000 to 70,000 ha every year in Shandong Province, China. In 2010, rotted rhizomes of cultivar Laiwu Big Ginger were reported on 20 ha in Anqiu, Shandong Province, and yield losses of up to 70% were reported. The aboveground symptoms were the water-conducting portion of symptomatic rhizomes was discolored brown and had a black dry rot of the cortex tissues (3). Thirty symptomatic rhizomes were sampled from six fields in six farms. Komada's method (1) was used to isolate the pathogen. Ten pieces from each rhizome were washed with sterile distilled water and plated on Komada selective medium at 25°C. White fungal colonies turned orchid after 7 days of incubation. Two types of asexual spores were associated with the colonies: microconidia and macroconidia. The microconidia were the most abundantly produced spores and were oval, elliptical or kidney shaped, and produced on aerial mycelia. Macroconidia had three to five cells and gradually pointed or curved edges, varied in size from 3 to 5 × 19 to 36 μm. The rDNA of the internal transcribed spacer regions 1 and 2 and the 5.8S gene in five isolates were amplified using primers ITS1 and ITS4, and the nucleotide sequence was the same as isolate no. 3, which was deposited in GenBank (Accession No. KC594035). A BLAST search showed 99% identity with the strain Z9 of Fusarium oxysporum (EF611088). Pathogenicity tests of five isolates were carried out in a greenhouse and the pathogenicity test of isolate no. 3 was selected for the method description. Ten 1-month-old ginger plants (cv. Laiwu Big Ginger) were grown in plastic pots (diameter 20 cm) with sandy soil and inoculated. Ten plants were used as untreated controls. Isolate no. 3 was grown on casein hydrolysate medium (4) for 72 h and the spores were harvested in sterile distilled water. Aqueous spore suspensions of isolate no. 3 were adjusted with deionized water to 1 × 108 CFU/ml as the inoculum. The prepared inoculum was injected with a syringe into the soil around the rhizome of ginger plants. Inoculated plants were placed in the greenhouse at 24 to 26°C and assessed for rhizome rot on the 14th day after inoculation. Disease severity was recorded based on a scale in which – = no symptoms; 1 = small lesions on seedlings, no rot; 2 = seedling rot; and 3 = plant dead. Similar rhizome rot symptoms were observed after inoculation. The inoculated isolate was re-isolated from diseased rhizomes, confirming its pathogenicity. To our knowledge, this is the first report of rhizome rot of ginger caused by F. oxysporum in China. Rhizome rot of ginger caused by Fusarium spp. is well known in Asian countries such as India (2). References: (1) H. Komada. Rev. Plant Prot. Res. 8:114, 1975. (2) V. Shanmugam et al. Biol Control. 66:1, 2013. (3) E. E. Trujillo. Diseases of Ginger (Zingiber officinale) in Hawaii, Circular 62, Hawaii Agricultural Experiment Station, University of Hawaii, December, 1964. (4) G. E. Wessman. Appl. Microbiol. 13:426, 1965.


2016 ◽  
Vol 34 ◽  
pp. 29
Author(s):  
M. Zouaoui ◽  
C. Dhieb ◽  
N. Ben Abdelali ◽  
M.R. Hajlaoui ◽  
N. Sadfi Zouaoui

Plant Disease ◽  
2017 ◽  
Vol 101 (7) ◽  
pp. 1329-1329
Author(s):  
W. X. Wu ◽  
Y. Liu ◽  
X. Q. Huang ◽  
L. Zhang

2017 ◽  
Vol 83 (2) ◽  
pp. 113-116
Author(s):  
Ayaka Minoshima ◽  
Jun Takeuchi ◽  
Tsuyoshi Ono ◽  
Satoshi Kagiwada ◽  
Hiromichi Horie ◽  
...  

Plant Disease ◽  
2016 ◽  
Vol 100 (5) ◽  
pp. 1023-1023 ◽  
Author(s):  
İ. Kurbetli ◽  
G. Sülü ◽  
M. Aydoğdu ◽  
M. Özdemir ◽  
S. M. Sülü ◽  
...  

Plant Disease ◽  
2018 ◽  
Vol 102 (3) ◽  
pp. 684-684
Author(s):  
S. Xiao ◽  
X. Y. Hou ◽  
M. Cheng ◽  
M. X. Deng ◽  
X. Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document