shoot blight
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 45)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 505 ◽  
pp. 119935
Author(s):  
Maria Caballol ◽  
Maia Ridley ◽  
Michele Colangelo ◽  
Cristina Valeriano ◽  
J. Julio Camarero ◽  
...  

Plant Disease ◽  
2022 ◽  
Author(s):  
Francisco Beluzán ◽  
Xavier Miarnau ◽  
Laura Torguet ◽  
Lourdes Zazurca ◽  
Paloma Abad-Campos ◽  
...  

Twenty-five almond cultivars were assessed for susceptibility to Diaporthe amygdali, causal agent of twig canker and shoot blight disease. In laboratory experiments, growing twigs were inoculated with four D. amygdali isolates. Moreover, growing shoots of almond cultivars grafted onto INRA ‘GF-677’ rootstock were used in four-year field inoculations with one D. amygdali isolate. In both type of experiments, inoculum consisted of agar plugs with mycelium, which were inserted underneath the bark and the lesion lengths caused by the fungus were measured. Necrotic lesions were observed in the inoculated almond cultivars both in laboratory and field tests, confirming the susceptibility of all the evaluated cultivars to all the inoculated isolates of D. amygdali. Cultivars were grouped as susceptible or very susceptible according to a cluster analysis. The relationship between some agronomic traits and cultivar susceptibility was also investigated. Blooming and ripening times were found relevant variables to explain cultivars performance related to D. amygdali susceptibility. Late and very late blooming, and early and medium ripening cultivars were highly susceptible to D. amygdali. Our results may provide valuable information that could assist in ongoing breeding programs of this crop and additionally in the selection of cultivars for new almond plantations.


Author(s):  
Aysun Öztürk ◽  
Kubilay Kurtulus Bastas

In the present study, totally 49 samples, which showed the symptoms of leaf and shoot blight and cankers with brown discoloration of necrotic tissues on mature branches, were collected from 22 districts and areas of Konya Province between 2017 and 2019. Presence rate of E. amylovora in collected samples, showing symptoms of the disease, from the province was determined to be 40% for blackberry and raspberry and 33% rosehip for rosehip in three years. Bacteria consistently isolated from the diseased tissues were identified on the basis of biochemical, physiological, and molecular tests, comparing with a reference strain of E. amylovora, isolated from blackberry (Kbb 371). Twenty seven representative bacterial strains were gram-negative, rod-shaped, mucoid, fermentative, positive for levan formation and acetoin production, no growth at 36°C, positive for gelatin hydrolysis, and negative for esculin hydrolysis, indole, urease, catalase, oxidase, arginine dehydrolase, reduction of nitrate, acid production from lactose, and inositol. All strains induced a hypersensitive response in tobacco (Nicotiana tobacum cv. White Burley) 24 h after inoculation with a 108 CFU ml-1 bacterial suspension in sterile distilled water. The strains were identified as E. amylovora using the species-specific primers set A/B (1), which amplified a 1-kb DNA fragment in PCR, and the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method. In order to fulfill the Koch postulates, pathogenicity test was confirmed by injecting bacterial suspensions of 108 CFU ml-1 in sterile distilled water into the shoot tips of 3-year-old blackberry R. fruticosus cv. Chester, raspberry R. idaeus cv. Heritage and rosehip R. canina. All tests were repeated three times. The bacterium was re-isolated from inoculated plants and identified as E. amylovora. Phytosanitary measures are needed to prevent any further spread of the bacterium as potential inoculum sources to new blackberry, raspberry and rosehip growing areas.


2021 ◽  
Vol 9 (12) ◽  
pp. 2565
Author(s):  
Ana Aragonés ◽  
Tania Manzanos ◽  
Glen Stanosz ◽  
Isabel A. Munck ◽  
Rosa Raposo ◽  
...  

Diplodia tip blight is the most ubiquitous and abundant disease in Spanish Pinus radiata plantations. The economic losses in forest stands can be very severe because of its abundance in cones and seeds together with the low genetic diversity of the host. Pinus resinosa is not genetically diverse in North America either, and Diplodia shoot blight is a common disease. Disease control may require management designs to be adapted for each region. The genetic diversity of the pathogen could be an indicator of its virulence and spreading capacity. Our objective was to understand the diversity of Diplodia spp. in Spanish plantations and to compare it with the structure of American populations to collaborate in future management guidelines. Genotypic diversity was investigated using microsatellite markers. Eight loci (SS9–SS16) were polymorphic for the 322 isolates genotyped. The results indicate that Diplodia sapinea is the most frequent Diplodia species present in plantations of the north of Spain and has high genetic diversity. The higher genetic diversity recorded in Spain in comparison to previous studies could be influenced by the intensity of the sampling and the evidence about the remarkable influence of the sample type.


Plant Disease ◽  
2021 ◽  
Author(s):  
Giorgio Gusella ◽  
Daniel P. Lawrence ◽  
Dalia Aiello ◽  
Yong Luo ◽  
Giancarlo Polizzi ◽  
...  

Pistachio (Pistacia vera) is an important crop in Italy, traditionally cultivated in Sicily (southern Italy) for several decades now. In recent years, new orchards have been planted in new areas of the island. Field surveys conducted in 2019 revealed the presence of symptomatic trees showing shoot dieback, cankers, fruit spots, and leaf lesions. Isolations from symptomatic samples consistently yielded fungal species in the Botryosphaeriaceae family. Identification of collected isolates was conducted using morphological and molecular analyses. Morphological characterization was based on conidia measurements of representative isolates and also effects of temperatures on mycelial growth was evaluated. DNA data derived from sequencing the ITS, tef1-α and tub2 gene regions were analyzed via phylogenetic analyses (Maximum Parsimony and Maximum Likelihood). Results of the analyses confirmed the identity of Botryosphaeria dothidea, Neofusicoccum hellenicum and Neofusicoccum mediterraneum. Pathogenicity tests were conducted on detached twigs and in the fields both on shoots as well as on fruit clusters using the mycelial plug technique. The inoculation experiments revealed that among the Botryosphaeriaceae species identified in this study N. hellenicum (occasionally detected) and N. mediterraneum were the most aggressive based on lesion length on shoots and fruits. N. mediterraneum was the most widespread among the orchards while B. dothidea can be considered a minor pathogen involved in this complex disease of pistachio. Moreover, to our knowledge, this is the first report of N. hellenicum in Italy.


2021 ◽  
Author(s):  
Nina Vučković ◽  
Ivana Vico ◽  
Bojan Duduk ◽  
Natasa Duduk

Family Botryosphaeriaceae and the genus Diaporthe (fam. Diaporthaceae) represent diverse groups of plant pathogens, which include causal agents of leaf spot, shoot blight, branch and stem cankers, dieback, and pre and postharvest apple fruit decay. Apple fruit with the symptoms of light to dark brown decay were collected during and after harvest from 2016 to 2018. Thirty selected isolates, which pathogenicity was confirmed, were identified and characterized based on multilocus phylogeny and morphology. Five species from the family Botryosphaeriaceae and two from the genus Diaporthe (fam. Diaporthaceae) were discovered. The most commonly isolated was Diplodia seriata followed by Botryosphaeria dothidea. In this work, Diaporthe rudis is described as a new postharvest pathogen of apple fruit. Diplodia bulgarica, Diplodia sapinea, Neofusicoccum yunnanense, and Diaporthe eres are initially described as postharvest apple and D. sapinea as postharvest quince and medlar fruit pathogens in Serbia. As species of the family Botryosphaeriaceae and the genus Diaporthe are known to cause other diseases on their hosts, have an endophytic nature, and a wide host range, findings from this study imply that they may become a new challenge for successful fruit production.


Plant Disease ◽  
2021 ◽  
Author(s):  
Lina Yang ◽  
Liang Zhang ◽  
Jun Cao ◽  
Lingyun Wang ◽  
Hengsong Shi ◽  
...  

Peach shoot blight (PSB) caused by Phomopsis amygdali is a serious threat to the healthy development of the peach industry and leads to 30-50 % damage to peach production in southern China. In this study, loop-mediated isothermal amplification (LAMP) technology was used to detect the P. amygdali target of a gene of GME6801 that was unique in the whole genome of the pathogen compared with that of Diaporthe (Phomopsis) longicolla TWH P74, Fusurium graminearum PH-1, Colletotrichum gloeosporioides SMCG1 and Magnaporthe oryzae 70-15. Blast comparison of this gene sequence in NCBI database showed that no homologous sequences were found. Therefore, the gene sequence of GME6801 was used to design two pairs of LAMP primers and one pair of PCR primers. The results showed that both of primer sets were specific to the 15 strains of P. amygdali, and the other 15 fungal strains presented negative reactions, similar to the control. In addition, 50 pg of genomic DNA of P. amygdali in a 25 μl reaction system could be detected by LAMP assay which was 100 times more sensitive than PCR. Furthermore, the GME6801 LAMP assay was used to detect artificially inoculated twigs of the pathogen, disease twigs within significantly symptomatic PSB in the field and healthy twigs in the same orchard, with the detection rates of 100%, 75% and 20.8%, respectively. However, the detection rates of conventional PCR were separately 100%, 62.5% and 16.7%. The results indicated that GME6801-based LAMP could be used for P. amygdali detection as its specificity, sensitivity and simplicity. This study provides a rapid experimental basis for the identification and prediction of P. amygdali that causes PSB and is beneficial for precise prevention and control of the disease.


2021 ◽  
Vol 60 (2) ◽  
pp. 177-198
Author(s):  
Yamin DU ◽  
Xianhong WANG ◽  
Yashuang GUO ◽  
Feng XIAO ◽  
Yuhong PENG ◽  
...  

Diaporthe species are significant pathogens, saprobes, and endophytes, with comprehensive host association and geographic distribution. These fungi cause severe dieback, cankers, leaf spots, blights, and stem-end rot of fruits on different plant hosts. This study, explored the occurrence, diversity and pathogenicity of Diaporthe spp. associated with Actinidia chinensis and A. deliciosa in the main kiwifruit production areas of China. Diaporthe isolates (284) derived from 106 diseased leaf and branch samples were examined. Multi-locus phylogenetic analyses and morphology of 43 representative isolates revealed that seven Diaporthe species were obtained, including D. alangii, D. compactum, D. eres, D. hongkongensis, D. sojae, D. tectonae, and D. unshiuensis. Pathogenicity tests were performed on kiwifruit fruits, leaves and branches. Koch’s postulates confirmed all species were pathogenic. D. alangii and D. tectonae were the most aggressive species, followed by D. eres, D. sojae, D. hongkongensis, D. unshiuensis, and D. compactum. Host range evaluation showed that the seven Diaporthe species could also infect apricot, apple, peach, pear, and plum.  This is the first report of D. alangii, D. compactum, D. sojae, D. tectonae, and D. unshiuensis infecting kiwifruit in China, increasing understanding of the Diaporthe complex causing diseases of kiwifruit plants, to assist effective disease management.


Plant Disease ◽  
2021 ◽  
Author(s):  
Lina Yang ◽  
Lingyun Wang ◽  
Jun Cao ◽  
Yuxin Zhu ◽  
Liang Zhang ◽  
...  

Peach shoot blight (PSB), which kills shoots, newly sprouted leaf buds and peach fruits, has gradually increased over the last ten years and has resulted in 30-50% of the total production loss of the peach industry in China. Phomopsis amygdali has been identified as the common causal agent of this disease. In this study, two new species, Phomopsis liquidambaris (strain JW18-2) and Diaporthe eres (strain JH18-2), were also pathogens causing PSB, as determined through molecular phylogenetic analysis based on the sequences of the internal transcribed spacer region (ITS), translation elongation factor 1-α (EF1-α) and beta-tubulin (TUB), and colony and conidial morphological characteristics. Biological phenotypic analysis showed that the colony growth rate of strain JW18-2 was faster than that of strains JH18-2 and ZN32 (one of the P. amygdali strains that we previously found and identified). All three strains produced α-conidia; however, JW18-2 could not produce β-conidia on alfalfa decoction and Czapek media, and the β-conidia produced by strain JH18-2 were shorter in length and thicker in width than those produced by strain ZN32. Pathogenicity tests showed that JW18-2 presented the strongest pathogenicity for peach fruits and twigs and was followed by strains JH18-2 and ZN32. The results shed light on the etiology of PSB and provide a warning that P. liquidambaris or D. eres might develop into dominant species after a few years, while also potentially benefitting the development of effective disease control management strategies.


Plant Disease ◽  
2021 ◽  
Author(s):  
Dong Qin ◽  
Yanyan Jiang ◽  
Rui Zhang ◽  
Emran Ali ◽  
Junwei Huo ◽  
...  

Podocarpus macrophyllus (Thunb.) D. Don is used in many fields, including landscape, medicine, and forest interplanting. In July 2019, shoot blight was observed on P. macrophyllus at three nurseries in Harbin, China. Approximately 15% of plants had symptoms of the disease, which included rapid, synchronized death of leaves on individual branches. Eventually the whole plant wilted. Leaves and stems turned dark blue to brown. Ten infected vascular tissue samples from 10 individual plants were surface-disinfested in 0.5% NaOCl for 5 min, rinsed 3 times in sterile distilled water, and cultured on potato dextrose agar (PDA) amended with 50 µg/ml streptomycin at 26°C. Six similar fungal isolates from ten samples were isolated and subcultured. Single-conidium isolates were generated with methods reported previously (Leslie and Summerell 2006). Colonies on PDA consisted of densely floccose aerial hyphae with light yellow and pinkish pigments. Microconidia were oval to obovoid or allantoid, 3.8 to 11.8 μm in length and 2.8 to 4.6 μm in width, mostly non-septate on carnation leaf agar (CLA). Macroconidia were naviculate-to-fusiform slender, 24.9 to 57.2 μm in length and 2.8 to 4.5 μm in width with 3- to 5- septate, with a beaked apical cell and a foot-shaped basal cell. According to these morphological characteristics, all isolates were identified as Fusarium spp. (Aoki et al. 2001 ). Genomic DNA was extracted from a representative isolate LHS1. The internal transcribed spacer regions (ITS), translation elongation factor 1-alpha gene (TEF-1ɑ) and β-tubulin (TUB2) gene were amplified using the primers ITS1 and ITS4 (Yin et al. 2012),EF1-728F/EF1-986R (Carbone and Kohn 1999) and T1/Bt2b (Glass and Donaldson 1995), respectively. DNA sequences of LHS1 were deposited in GenBank (accession nos. MT914496 for ITS, MT920920 for TEF-1ɑ and MT920921 for TUB2, respectively). MegaBLAST analysis of the ITS, TEF-1a, and TUB2 sequences indicated 100%, 97.7% and 100% similarity with Fusarium concentricum isolate CBS 450.97 (accession no. MH862659.1 for ITS, MT010992.1 for TEF-1a, and MT011040.1 for TUB2, respectively). To determine pathogenicity, P. macrophyllus plants were grown in 10-cm pots containing a commercial potting mix (five plants/pot). At the 10 to 12 leaf stage, 10 healthy plants (2 pots) were inoculated by spraying 5 ml of a conidial suspension (4×106 spores/ml) onto every plant. Ten plants treated with sterile distilled water served as a control. The test was repeated twice. All plants were placed in a humidity chamber (>95% RH, 26℃) for 48 h after inoculation and then transferred to a greenhouse at 22/28°C (night/day). All inoculated wilted with leaves and stems turning dark blue to brown 15 days after inoculation. No symptoms were observed on the control plants. The fungus was re-isolated and confirmed to be F. concentricum according to morphological characteristics and molecular identification. To our knowledge, this is the first report of F. concentricum on P. macrophyllus in world. The disease caused a large number of plants to wilt and die, seriously impacting the ability of the horticulture industry to produce P. macrophyllus. Although this pathogen causes leaf and shoot blight symptoms, it is not clear if the pathogen is also a vascular wilt disease. The occurrence of the new disease caused by F. concentricum highlights the importance of developing management strategies to protect P. macrophyllus. 


Sign in / Sign up

Export Citation Format

Share Document