Strategies Humpback Whale Mothers Employ As Their Calves Mature And Grow To Avoid Male Harassment

2018 ◽  
Author(s):  
Adam A. Pack
Behaviour ◽  
2009 ◽  
Vol 146 (11) ◽  
pp. 1573-1600 ◽  
Author(s):  
Matthew Sullivan ◽  
Rachel Cartwright

AbstractIn mammalian mating systems, where operational sex ratios are male skewed and males must compete for access to females, increased levels of male attention may amount to harassment of females and their offspring. To evaluate how male associations affect the behaviour of humpback whale (Megaptera novaeangliae) female and calf pairs in breeding regions, we compiled time budgets and monitored calf breathing regimes for females with calves in a range of associations, with (N = 71) and without (N = 19) males, in Hawaiian waters. We found that, while associations with a single male did not significantly change the behaviour of female–calf pairs, associations with multiple males led to increases in the time spent traveling (median increase 35%; p < 0.001) and decreases in time spent at rest (median decrease 29%; p < 0.001). Additionally, calves spent less time at the surface (median decrease from 10% to 0; p < 0.001) and the frequency of intermittent breaths between dives increased (median increase from 16 to 22%; p = 0.006). We show that these behavioural changes would require increased energy expenditure, which could impact calf fitness, and we speculate that the association between a female–calf pair and single male escort comprises a female counterstrategy that offsets male harassment, consistent with Mesnick's (1997) bodyguard hypothesis.


2020 ◽  
Vol 134 (1) ◽  
pp. 123-131
Author(s):  
Eduardo Mercado

2017 ◽  
Author(s):  
Maria Clara Iruzun Martins ◽  
Carolyn Miller ◽  
Philip K. Hamilton ◽  
Jooke Robbins ◽  
Daniel Zitterbart ◽  
...  
Keyword(s):  

2007 ◽  
Vol 33 (2) ◽  
pp. 202-213 ◽  
Author(s):  
Sean R. Green ◽  
Eduardo Mercado ◽  
Adam A. Pack ◽  
Louis M. Herman

2020 ◽  
Vol 46 (6) ◽  
pp. 578-583
Author(s):  
Fernando Félix ◽  
Daniela Rodrigues Abras ◽  
Ted Cheeseman ◽  
Ben Haase ◽  
Joana D’Arc Figueiredo Santos ◽  
...  

2003 ◽  
Vol 29 (1) ◽  
pp. 37-52 ◽  
Author(s):  
Eduardo Mercado ◽  
Louis M. Herman ◽  
Adam A. Pack

2006 ◽  
Vol 1 (2) ◽  
pp. 180-188
Author(s):  
A. Facchini ◽  
F. Delogu ◽  
L. Lambroni ◽  
F.M. Pulselli ◽  
E.B.P. Tiezzi

2021 ◽  
Vol 13 (11) ◽  
pp. 2074
Author(s):  
Ryan R. Reisinger ◽  
Ari S. Friedlaender ◽  
Alexandre N. Zerbini ◽  
Daniel M. Palacios ◽  
Virginia Andrews-Goff ◽  
...  

Machine learning algorithms are often used to model and predict animal habitat selection—the relationships between animal occurrences and habitat characteristics. For broadly distributed species, habitat selection often varies among populations and regions; thus, it would seem preferable to fit region- or population-specific models of habitat selection for more accurate inference and prediction, rather than fitting large-scale models using pooled data. However, where the aim is to make range-wide predictions, including areas for which there are no existing data or models of habitat selection, how can regional models best be combined? We propose that ensemble approaches commonly used to combine different algorithms for a single region can be reframed, treating regional habitat selection models as the candidate models. By doing so, we can incorporate regional variation when fitting predictive models of animal habitat selection across large ranges. We test this approach using satellite telemetry data from 168 humpback whales across five geographic regions in the Southern Ocean. Using random forests, we fitted a large-scale model relating humpback whale locations, versus background locations, to 10 environmental covariates, and made a circumpolar prediction of humpback whale habitat selection. We also fitted five regional models, the predictions of which we used as input features for four ensemble approaches: an unweighted ensemble, an ensemble weighted by environmental similarity in each cell, stacked generalization, and a hybrid approach wherein the environmental covariates and regional predictions were used as input features in a new model. We tested the predictive performance of these approaches on an independent validation dataset of humpback whale sightings and whaling catches. These multiregional ensemble approaches resulted in models with higher predictive performance than the circumpolar naive model. These approaches can be used to incorporate regional variation in animal habitat selection when fitting range-wide predictive models using machine learning algorithms. This can yield more accurate predictions across regions or populations of animals that may show variation in habitat selection.


Sign in / Sign up

Export Citation Format

Share Document