predictive performance
Recently Published Documents





Salma Firdose ◽  
Surendran Swapna Kumar ◽  
Ravinda Gayan Narendra Meegama

Social distancing is one of the simple and effective shields for every individual to control spreading of virus in present scenario of pandemic coronavirus disease (COVID-19). However, existing application of social distancing is a basic model and it is also characterized by various pitfalls in case of dynamic monitoring of infected individual accurately. Review of existing literature shows that there has been various dedicated research attempt towards social distancing using available technologies, however, there are further scope of improvement too. This paper has introduced a novel framework which is capable of computing the level of threat with much higher degree of accuracy using distance and duration of stay as elementary parameters. Finally, the model can successfully classify the level of threats using deep learning. The study outcome shows that proposed system offers better predictive performance in contrast to other approaches.

2022 ◽  
Vol 12 ◽  
Shaowu Lin ◽  
Yafei Wu ◽  
Ya Fang

BackgroundDepression is highly prevalent and considered as the most common psychiatric disorder in home-based elderly, while study on forecasting depression risk in the elderly is still limited. In an endeavor to improve accuracy of depression forecasting, machine learning (ML) approaches have been recommended, in addition to the application of more traditional regression approaches.MethodsA prospective study was employed in home-based elderly Chinese, using baseline (2011) and follow-up (2013) data of the China Health and Retirement Longitudinal Study (CHARLS), a nationally representative cohort study. We compared four algorithms, including the regression-based models (logistic regression, lasso, ridge) and ML method (random forest). Model performance was assessed using repeated nested 10-fold cross-validation. As the main measure of predictive performance, we used the area under the receiver operating characteristic curve (AUC).ResultsThe mean AUCs of the four predictive models, logistic regression, lasso, ridge, and random forest, were 0.795, 0.794, 0.794, and 0.769, respectively. The main determinants were life satisfaction, self-reported memory, cognitive ability, ADL (activities of daily living) impairment, CESD-10 score. Life satisfaction increased the odds ratio of a future depression by 128.6% (logistic), 13.8% (lasso), and 13.2% (ridge), and cognitive ability was the most important predictor in random forest.ConclusionsThe three regression-based models and one ML algorithm performed equally well in differentiating between a future depression case and a non-depression case in home-based elderly. When choosing a model, different considerations, however, such as easy operating, might in some instances lead to one model being prioritized over another.

2022 ◽  
Vol 12 (1) ◽  
pp. 112
Rui Guo ◽  
Renjie Zhang ◽  
Ran Liu ◽  
Yi Liu ◽  
Hao Li ◽  

Spontaneous intracerebral hemorrhage (SICH) has been common in China with high morbidity and mortality rates. This study aims to develop a machine learning (ML)-based predictive model for the 90-day evaluation after SICH. We retrospectively reviewed 751 patients with SICH diagnosis and analyzed clinical, radiographic, and laboratory data. A modified Rankin scale (mRS) of 0–2 was defined as a favorable functional outcome, while an mRS of 3–6 was defined as an unfavorable functional outcome. We evaluated 90-day functional outcome and mortality to develop six ML-based predictive models and compared their efficacy with a traditional risk stratification scale, the intracerebral hemorrhage (ICH) score. The predictive performance was evaluated by the areas under the receiver operating characteristic curves (AUC). A total of 553 patients (73.6%) reached the functional outcome at the 3rd month, with the 90-day mortality rate of 10.2%. Logistic regression (LR) and logistic regression CV (LRCV) showed the best predictive performance for functional outcome (AUC = 0.890 and 0.887, respectively), and category boosting presented the best predictive performance for the mortality (AUC = 0.841). Therefore, ML might be of potential assistance in the prediction of the prognosis of SICH.

2022 ◽  
Vol 14 (1) ◽  
pp. 46
Fei Han ◽  
Ian Stockwell

Predictive models are currently used for early intervention to help identify patients with a high risk of adverse events. Assessing the accuracy of such models is a crucial part of the development process. To measure the predictive performance of a scoring model, quantitative indices such as the K-S statistic and C-statistic are used. This paper discusses the relationship between Gini coefficients and event prevalence rates. The main contribution of the paper is the theoretical proof of the relationship between the Gini coefficient and event prevalence rate.

2022 ◽  
Vol 11 (2) ◽  
pp. 380
Ernest Jan Bobeff ◽  
Malgorzata Bukowiecka-Matusiak ◽  
Konrad Stawiski ◽  
Karol Wiśniewski ◽  
Izabela Burzynska-Pedziwiatr ◽  

Aneurysmal subarachnoid haemorrhages (aSAH) account for 5% of strokes and continues to place a great burden on patients and their families. Cerebral vasospasm (CVS) is one of the main causes of death after aSAH, and is usually diagnosed between day 3 and 14 after bleeding. Its pathogenesis remains poorly understood. To verify whether plasma concentration of amino acids have prognostic value in predicting CVS, we analysed data from 35 patients after aSAH (median age 55 years, IQR 39–62; 20 females, 57.1%), and 37 healthy volunteers (median age 50 years, IQR 38–56; 19 females, 51.4%). Fasting peripheral blood samples were collected on postoperative day one and seven. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis was performed. The results showed that plasma from patients after aSAH featured a distinctive amino acids concentration which was presented in both principal component analysis and direct comparison. No significant differences were noted between postoperative day one and seven. A total of 18 patients from the study group (51.4%) developed CVS. Hydroxyproline (AUC = 0.7042, 95%CI 0.5259–0.8826, p = 0.0248) and phenylalanine (AUC = 0.6944, 95%CI 0.5119–0.877, p = 0.0368) presented significant CVS prediction potential. Combining the Hunt-Hess Scale and plasma levels of hydroxyproline and phenylalanine provided the model with the best predictive performance and the lowest leave-one-out cross-validation of performance error. Our results suggest that plasma amino acids may improve sensitivity and specificity of Hunt-Hess scale in predicting CVS.

2022 ◽  
Jie Li ◽  
Xin Li ◽  
John Hutchinson ◽  
Mohammad Asad ◽  
Yadong Wang ◽  

Background: It's critical to identify COVID-19 patients with a higher death risk at early stage to give them better hospitalization or intensive care. However, thus far, none of the machine learning models has been shown to be successful in an independent cohort. We aim to develop a machine learning model which could accurately predict death risk of COVID-19 patients at an early stage in other independent cohorts. Methods: We used a cohort containing 4711 patients whose clinical features associated with patient physiological conditions or lab test data associated with inflammation, hepatorenal function, cardiovascular function and so on to identify key features. To do so, we first developed a novel data preprocessing approach to clean up clinical features and then developed an ensemble machine learning method to identify key features. Results: Finally, we identified 14 key clinical features whose combination reached a good predictive performance of AUC 0.907. Most importantly, we successfully validated these key features in a large independent cohort containing 15,790 patients. Conclusions: Our study shows that 14 key features are robust and useful in predicting the risk of death in patients confirmed SARS-CoV-2 infection at an early stage, and potentially useful in clinical settings to help in making clinical decisions.

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 393
Catharina Silvia Lisson ◽  
Christoph Gerhard Lisson ◽  
Sherin Achilles ◽  
Marc Fabian Mezger ◽  
Daniel Wolf ◽  

The study’s primary aim is to evaluate the predictive performance of CT-derived 3D radiomics for MCL risk stratification. The secondary objective is to search for radiomic features associated with sustained remission. Included were 70 patients: 31 MCL patients and 39 control subjects with normal axillary lymph nodes followed over five years. Radiomic analysis of all targets (n = 745) was performed and features selected using the Mann Whitney U test; the discriminative power of identifying “high-risk MCL” was evaluated by receiver operating characteristics (ROC). The four radiomic features, “Uniformity”, “Entropy”, “Skewness” and “Difference Entropy” showed predictive significance for relapse (p < 0.05)—in contrast to the routine size measurements, which showed no relevant difference. The best prognostication for relapse achieved the feature “Uniformity” (AUC-ROC-curve 0.87; optimal cut-off ≤0.0159 to predict relapse with 87% sensitivity, 65% specificity, 69% accuracy). Several radiomic features, including the parameter “Short Axis,” were associated with sustained remission. CT-derived 3D radiomics improves the predictive estimation of MCL patients; in combination with the ability to identify potential radiomic features that are characteristic for sustained remission, it may assist physicians in the clinical management of MCL.

2022 ◽  
Vol 15 (1) ◽  
Tianping Wang ◽  
Haijie Wang ◽  
Yida Wang ◽  
Xuefen Liu ◽  
Lei Ling ◽  

Abstract Background Epithelial ovarian cancer (EOC) is the most malignant gynecological tumor in women. This study aimed to construct and compare radiomics-clinical nomograms based on MR images in EOC prognosis prediction. Methods A total of 186 patients with pathologically proven EOC were enrolled and randomly divided into a training cohort (n = 130) and a validation cohort (n = 56). Clinical characteristics of each patient were retrieved from the hospital information system. A total of 1116 radiomics features were extracted from tumor body on T2-weighted imaging (T2WI), T1-weighted imaging (T1WI), diffusion weighted imaging (DWI) and contrast-enhanced T1-weighted imaging (CE-T1WI). Paired sequence signatures were constructed, selected and trained to build a prognosis prediction model. Radiomic-clinical nomogram was constructed based on multivariate logistic regression analysis with radiomics score and clinical features. The predictive performance was evaluated by receiver operating characteristic curve (ROC) analysis, decision curve analysis (DCA) and calibration curve. Results The T2WI radiomic-clinical nomogram achieved a favorable prediction performance in the training and validation cohort with an area under ROC curve (AUC) of 0.866 and 0.818, respectively. The DCA showed that the T2WI radiomic-clinical nomogram was better than other models with a greater clinical net benefit. Conclusion MR-based radiomics analysis showed the high accuracy in prognostic estimation of EOC patients and could help to predict therapeutic outcome before treatment.

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 172
Yejin Esther Yun ◽  
Daniella Calderon-Nieva ◽  
Abdullah Hamadeh ◽  
Andrea N. Edginton

The higher skin surface area to body weight ratio in children and the prematurity of skin in neonates may lead to higher chemical exposure as compared to adults. The objectives of this study were: (i) to provide a comprehensive review of the age-dependent anatomical and physiological changes in pediatric skin, and (ii) to construct and evaluate an age-dependent pediatric dermal absorption model. A comprehensive review was conducted to gather data quantifying the differences in the anatomy and physiology of child and adult skin. Maturation functions were developed for model parameters that were found to be age-dependent. A pediatric dermal absorption model was constructed by updating a MoBi implementation of the Dancik et al. 2013 skin permeation model with these maturation functions. Using a workflow for adult-to-child model extrapolation, the predictive performance of the model was evaluated by comparing its predicted rates of flux of diamorphine, phenobarbital and buprenorphine against experimental observations using neonatal skin. For diamorphine and phenobarbital, the model provided reasonable predictions. The ratios of predicted:observed flux in neonates for diamorphine ranged from 0.55 to 1.40. For phenobarbital, the ratios ranged from 0.93 to 1.26. For buprenorphine, the model showed acceptable predictive performance. Overall, the physiologically based pediatric dermal absorption model demonstrated satisfactory prediction accuracy. The prediction of dermal absorption in neonates using a model-based approach will be useful for both drug development and human health risk assessment.

Sign in / Sign up

Export Citation Format

Share Document