scholarly journals Estimation of the Small-Strain Stiffness of Clean and Silty Sands using Stress-Strain Curves and CPT Cone Resistance

2009 ◽  
Vol 49 (4) ◽  
pp. 545-556 ◽  
Author(s):  
Junhwan Lee ◽  
Doohyun Kyung ◽  
Bumjoo Kim ◽  
Monica Prezzi
2021 ◽  
Vol 61 (2) ◽  
pp. 520-532
Author(s):  
Xinyu Liu ◽  
Xianwei Zhang ◽  
Lingwei Kong ◽  
Xinming Li ◽  
Gang Wang

2013 ◽  
Vol 161 ◽  
pp. 65-80 ◽  
Author(s):  
V. Fioravante ◽  
D. Giretti ◽  
M. Jamiolkowski

2013 ◽  
Vol 631-632 ◽  
pp. 782-788
Author(s):  
Cheng Chen ◽  
Zheng Ming Zhou

Soils have nonlinear stiffness and develops irrecoverable strains even at very small strain levels. Accurate modeling of stress-strain behaviour at various strain levels is very important for predicting the deformation of soils. Some existing stress-strain models are reviewed and evaluated firstly. And then a new simple non-linear stress-strain model is proposed. Four undetermined parameters involved in the proposed model can be obtained through maximum Young’s module, deformation module, and limit deviator stress and linearity index of soils that can be measured from experiment directly or calculated by empirical formulas indirectly. The effectiveness of the proposed stress-strain model is examined by predicting stress-strain curves measured in plane-strain compression test on Toyota sand and undrained triaxial compression test on London clay. The fitting results of the proposed model are in good agreement with experimental data, which verify the effectiveness of the model.


Author(s):  
Xianwei Zhang ◽  
Xinyu Liu ◽  
Lingwei Kong ◽  
Gang Wang ◽  
Cheng Chen

Most previous studies have focused on the small strain stiffness of sedimentary soil while little attention has been given to residual soils with different properties. Most studies also neglected the effects of the deviator stress, which is extensively involved in civil engineering. This note considers the effects of the deviator stress on the small-strain stiffness of natural granite residual soil (GRS) as established from resonant column tests performed under various stress ratios. Although increasing the stress ratio results in a greater maximum shear modulus for both natural and remolded residual soils, remolded soil is more sensitive to changes in the stress ratio, which highlights the effects of soil cementation. The data herein offers new insights to understand the stiffness of residual soil and other weathered geomaterials.


2015 ◽  
Vol 5 (3) ◽  
pp. 217-223 ◽  
Author(s):  
L. Morales ◽  
E. Romero ◽  
C. Jommi ◽  
E. Garzón ◽  
A. Giménez

Sign in / Sign up

Export Citation Format

Share Document