fabric anisotropy
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 31)

H-INDEX

21
(FIVE YEARS 2)

Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 414
Author(s):  
Patrizia Fiannacca ◽  
Damiano Russo ◽  
Eugenio Fazio ◽  
Rosolino Cirrincione ◽  
Manish A. Mamtani

The Serre Batholith in Central Calabria (southern Italy) represents the intermediate portion of a continuous cross-section of late Variscan continental crust. The various granitoid units of the batholith were emplaced at depths between 23 and 6 km through an overaccretion mechanism that, at its upper levels, was marked by the emplacement of two-mica granodiorites and granites (MBG) at c. 295 Ma, followed by weakly peraluminous granodiorites (BAG) at c. 292 Ma. These upper crustal granitoid rocks have recorded tectonic stresses, which affected the batholith during cooling of the magmatic bodies, exhibiting a range of deformation microstructures from submagmatic to low-temperature subsolidus conditions, but without developing an evident meso/micro-structural fabric. Anisotropy of magnetic susceptibility (AMS) was employed to identify a possible “internal” fabric of the Serre upper crustal granitoids, revealing a magnetic foliation represented by a mainly oblate AMS ellipsoid. Magnetic foliations and lineations are consistent with a stress field characterized by a shortening axis roughly oriented NW–SE. Further studies are in progress to investigate more in depth the relationships between regional tectonic structures and the emplacement of the late-Variscan Serre Batholith granitoids.


2021 ◽  
Author(s):  
Jorge Castro ◽  
Nallathamby Sivasithamparam

AbstractThis paper presents a novel, exact, semi-analytical solution for the quasi-static drained expansion of a cylindrical cavity in soft soils with fabric anisotropy and structure. The assumed constitutive model is the S-CLAY1S model, which is a Cam clay-type model that considers fabric anisotropy that evolves with plastic strains, structure and gradual degradation of bonding (destructuration) due to plastic straining. The solution involves the numerical integration of a system of eight first-order ordinary differential equations, three of them corresponding to the effective stresses in cylindrical coordinates, other three corresponding to the components of the fabric tensor and one corresponding to the amount of bonding and another corresponding to the specific volume. The solution is validated against finite element analyses. When destructuration is considered, the solution provides slightly lower values of the effective radial and mean stresses near the cavity wall. Besides, the specific volume is further reduced due to loss of bonding. Parametric analyses and discussion of the influence of soil overconsolidation, expansion of the cavity and initial amount of bonding are presented.


Sign in / Sign up

Export Citation Format

Share Document