2016 ◽  
Vol 53 (1) ◽  
pp. 35-48 ◽  
Author(s):  
H. Choo ◽  
N.N. Yeboah ◽  
S.E. Burns

High-carbon-content fly ashes with biomass particles are typically landfilled in accordance with the ASTM C618 regulation. To quantify their geotechnical properties relating to storage and disposal, this study evaluates the small to intermediate strain properties of fly ashes with various carbon and biomass contents. Tested fly ashes had carbon contents ranging from 1.1% to 9.6%, resulting from co-combusting coal with biomass (biomass contents ranging from 0% to 8.2% by weight). The small-strain stiffness and intermediate-strain constrained modulus were evaluated using consolidation tests performed in a modified oedometer cell equipped with bender elements. It was found that initial void ratio governed the compressibility (or constrained modulus) of fly ashes, and with an increase in carbon and biomass contents, the small-strain stiffness of fly ashes decreased due to the decrease in number of direct contacts between microspheres. In addition, the interfine void ratio, ef, was employed instead of global void ratio to capture the alteration of interparticle contact or interparticle coordination between microspheres, due to the change in carbon and biomass contents. Finally, the stiffness in an overconsolidated state and the stiffness anisotropy of fly ashes were evaluated.


2012 ◽  
Vol 49 (8) ◽  
pp. 986-993 ◽  
Author(s):  
Q. Li ◽  
C.W.W. Ng ◽  
G.B. Liu

Although a large number of tunnels and deep excavations have been constructed in Shanghai, small-strain stiffness properties of natural Shanghai clay have rarely been reported in the literature. In this study, the degree of inherent stiffness anisotropy of natural Shanghai clay was investigated in a triaxial apparatus equipped with local strain transducers and a shear-wave velocity measurement system. Three sets of side-mounted bender elements, consisting of one transmitter and two receivers each, were installed on a prismatic specimen. Two series of triaxial tests on prismatic specimens of intact Shanghai clay were carried out under an isotropic stress state. Shear-wave velocities and hence elastic shear moduli in different planes were determined from bender element measurements. The cross-correlation method using two received signals gives rise to the most objective and repeatable results on shear-wave velocities in comparison with other commonly used methods. Intact Shanghai clay clearly exhibits inherent stiffness anisotropy in terms of its elastic shear modulus ratio (G0(hh)/G0(hv)) of about 1.2 for a mean effective stress varying from 50 to 400 kPa. The measured higher stiffness in the horizontal plane may be attributed to the stronger layering structure in the horizontal bedding plane. A unique relationship is found that relates the normalized shear moduli to the stress state in each plane by incorporating a void ratio function in the form of F(e) = e–2.6.


2009 ◽  
Vol 49 (4) ◽  
pp. 545-556 ◽  
Author(s):  
Junhwan Lee ◽  
Doohyun Kyung ◽  
Bumjoo Kim ◽  
Monica Prezzi

2021 ◽  
Vol 61 (2) ◽  
pp. 520-532
Author(s):  
Xinyu Liu ◽  
Xianwei Zhang ◽  
Lingwei Kong ◽  
Xinming Li ◽  
Gang Wang

2013 ◽  
Vol 161 ◽  
pp. 65-80 ◽  
Author(s):  
V. Fioravante ◽  
D. Giretti ◽  
M. Jamiolkowski

Author(s):  
Xianwei Zhang ◽  
Xinyu Liu ◽  
Lingwei Kong ◽  
Gang Wang ◽  
Cheng Chen

Most previous studies have focused on the small strain stiffness of sedimentary soil while little attention has been given to residual soils with different properties. Most studies also neglected the effects of the deviator stress, which is extensively involved in civil engineering. This note considers the effects of the deviator stress on the small-strain stiffness of natural granite residual soil (GRS) as established from resonant column tests performed under various stress ratios. Although increasing the stress ratio results in a greater maximum shear modulus for both natural and remolded residual soils, remolded soil is more sensitive to changes in the stress ratio, which highlights the effects of soil cementation. The data herein offers new insights to understand the stiffness of residual soil and other weathered geomaterials.


Sign in / Sign up

Export Citation Format

Share Document