Géotechnique Letters
Latest Publications


TOTAL DOCUMENTS

580
(FIVE YEARS 307)

H-INDEX

27
(FIVE YEARS 12)

Published By Thomas Telford Ltd.

2045-2543

2022 ◽  
Vol 12 (1) ◽  
pp. 1-26
Author(s):  
M. Watford ◽  
J. Templeman ◽  
Z. Orazalin ◽  
H. Zhou ◽  
A. Franza ◽  
...  

In this paper, the lateral limiting pressure offered by the deep ‘flow-around’ soil failure mechanism for perimeter (ring) pile groups in undrained soil is explored using two−dimensional finite element modelling. A parametric study investigates the role of group configuration, pile−soil adhesion, group size, pile spacing and load direction on group capacity and corresponding soil failure mechanisms. The finite element output show that the plan group configuration (square or circular) has a negligible influence on lateral capacity for closely spaced perimeter pile groups. When compared to ‘full’ square pile groups with the same number of piles, the present results suggest that for practical pile spacing (≳ two pile diameters), perimeter groups do not necessarily increase capacity efficiency, particularly if the piles are smooth. Nevertheless, perimeter groups are shown to be characterized by both the invariance of their capacity to the direction of loading and their highly uniform load-sharing between piles, which are beneficial features to optimize design.


2022 ◽  
Vol 12 (1) ◽  
pp. 1-16
Author(s):  
P. Viswanath ◽  
A. Das ◽  
G. Buscarnera

In fluid-saturated granular materials, the physicochemical interaction between pore-fluids and grain minerals alters packing conditions, which in turn leads to stress change deformation and, in extreme cases, even collapse. Chemical weathering, either naturally occurring or induced by human activities, is among such natural processes. This article presents an experimental study illustrating the major effects of chemical weathering on the deformation and stress state of granular materials, emphasising particulate systems entirely made by highly soluble carbonate grains. Laboratory experiments are conducted by subjecting acidic environments to granular assemblies under oedometric condition. The reaction rate is controlled by regulating various testing parameters, such as acid concentration and pore fluid flow rate. Experiments revealed that the lateral earth pressure steadily reduces in some cases, while others exhibit non-monotonic evolution. From a macroscopic standpoint, the rate of the chemical reaction was critical to determine the emergence of either of these trends. Such findings are relevant for any particulate system in which the stress conditions are controlled by multi-physical processes proceeding at different rates, such as waste products within bioreactors, gouge materials within faults and natural deposits subjected to the injection/extraction of reactive fluids.


2022 ◽  
Vol 12 (1) ◽  
pp. 1-16
Author(s):  
K. Watanabe ◽  
A. Zafar ◽  
M. Tomita ◽  
K. Nishikouri

In recent years, there has been serious damage to embankments on liquefied ground because of large earthquakes. To understand such damage, many two-dimensional shaking table model tests have been performed, in both gravitational and centrifugal fields, to investigate the dynamic behavior and residual displacement of embankments and river dikes on liquefiable ground. In recent years, three-dimensional numerical analysis has been used in practical design because it is difficult to consider the complex dynamic behaviors of three-dimensional embankments and the surrounding liquefied ground in a two-dimensional analysis. However, there are only a limited number of cases in which the applicability of three-dimensional analysis has been validated based on comparisons with true values derived from model tests or data from actual disasters. Therefore, in this study, a series of shaking table tests were conducted to investigate the seismic behavior of a three-dimensional embankment on liquefiable ground. In addition, the effect of the shaking direction on the seismic behavior of the embankment was evaluated. The experiment revealed that the residual deformation and its dominant direction were significantly affected by the three-dimensional shape and total weight of the embankment, not by the shaking direction. This result indicates that the influence of the three-dimensional shape of the embankment on the deformation behavior cannot be ignored, and that the influence should be properly evaluated in seismic design.


2022 ◽  
Vol 12 (1) ◽  
pp. 1-25
Author(s):  
S.M. Dassanayake ◽  
A. Mousa

The clogging-unclogging process in gap-graded soils is a result of the migration of seepage-driven fines, which subsequently induces measurable changes in the local hydraulic gradients. This process can be temporally observed in the variations of Darcy's hydraulic conductivity (K). The current study proposes an integrated statistical Monte Carlo approach combining the discrete element method and 2D computational fluid dynamics simulations to estimate the flow-dependent constriction size distribution (CSD) for a gap-graded soil. The computational inferences were supported with experimental results using an internally stable soil, which was subjected to one-dimensional flow stimulating desired hydraulic loadings: a hydraulic gradient lower than the critical gradient applied as a multi-staged loading pattern. The 35th percentile size of the flow-dependent CSD (Dc35) for both internally stable and unstable gap-graded soils becomes approximately equal to Dc35 at steady-state. However, a greater variation of larger constrictions persists for the unstable soils. This pilot study has shown the applicability of the proposed method to estimate flow-dependent CSD for a wide range of experimentally observed K values.


2022 ◽  
Vol 12 (1) ◽  
pp. 1-28
Author(s):  
Y. H. Kim ◽  
S. H. Chow ◽  
M. S. Hossain ◽  
J. Zhao ◽  
S. Rohan

This paper reports the results from field tests on a 1/15th scale recently developed fish anchor. The tests were conducted at three locations in the Swan River, Perth. Two series of tests were performed from the Burswood and Maylands jetties with water depths between 1.1 and 1.9 m. The final series of tests were undertaken in deeper waters of 2.6 m from a barge. The riverbed at the Burswood Jetty and barge test location consisted of soft clay, and that at the Maylands Jetty comprised sandy silt. The tip embedment depths of the scaled fish anchor, with dry weight of 0.304 kN and impact velocity of 5.89∼9.55 m/s, in soft clay were 1.17∼2.40 times the anchor length. For similar impact velocities, the tip embedment depths in sandy silt were 30 ∼ 60% shallower than those in soft clay. By comparing the field test data in clay, the fish anchor achieved normalised embedment depths similar to those of the torpedo and OMNI-Max anchors under half or less impact velocity. Most importantly, the field tests confirmed the diving behaviour of the fish anchor under loading with mudline inclination of 20° and 25°, with the second peak dictated the capacity. The ultimate capacity was 5∼7 times the anchor submerged weight in water.


2022 ◽  
Vol 12 (1) ◽  
pp. 1-26
Author(s):  
V. S. R. Annapareddy ◽  
T. Bore ◽  
M. Bajodek ◽  
A. Scheuermann

This letter proposes semi-analytical methods to obtain the local permeability for granular soils based on indirect measurements of the local porosity profile in a large coaxial cell permeameter using spatial time domain reflectometry. The porosity profile is used to obtain the local permeability using the modified Kozeny-Carman and Katz-Thompson equations, which incorporated an effective particle diameter that accounted for particle migration within the permeameter. The profiles of the local permeability obtained from the proposed methods are compared with experimentally obtained permeability distributions using pressure measurements and flow rate. The permeabilities obtained with the proposed methods are comparable with the experimentally obtained permeabilities and are within one order of magnitude deviation, which is an acceptable range for practical applications.


2022 ◽  
Vol 12 (1) ◽  
pp. 1-19
Author(s):  
S.K. Das ◽  
S.K. Verma ◽  
A. Das

The present study highlights the effects of strain rate on the critical state response of crushable granular materials. A set of drained triaxial tests is simulated using the discrete element method (DEM) to understand the rate effects on the stress-strain and volumetric behaviour of the granular sample. The DEM parameters are obtained by comparing the stress-strain and particle crushing behaviour of in-house experimental analysis on crushable coral sand under a slow strain rate. In DEM, the particles are subjected to varied strain rates under different initial confining pressures and initial densities to capture the rate effects on the macroscopic responses until the critical state. It is seen that crushing increases with increasing confining stress. However, a higher strain rate induces relatively lower crushing and higher strength in terms of both peak stress and residual stress. It is observed that in pressure-volume space, the critical state line alters with the increasing strain rate of the crushable samples, especially at high confining conditions, whereas strain rate effect on critical state seems to be negligible at low confining conditions due to the absence of particle crushing.


2022 ◽  
Vol 12 (1) ◽  
pp. 1-19
Author(s):  
Q. Cai ◽  
B. Xiang ◽  
C. W. W. Ng ◽  
K. S. Wong ◽  
X. Chen ◽  
...  

Although different kinds of foundations have been investigated against an earthquake faulting, the interaction between pile group and dip-slip fault has not yet been fully understood. This letter investigates the interaction between piled raft and normal faulting by means of centrifuge and numerical modelling. In centrifuge test, a piled raft was simulated with a half model for a better observation of fault rupture path under the raft. The loading transfer mechanism was further examined using a three-dimensional finite difference software (FLAC3D). The measured and computed results showed that the piled raft displaced and tilted linearly with the magnitude of faulting. The fault rupture bifurcated into two and diverted towards both edges of the raft. Two types of loading transfer mechanism were identified during faulting. Working load transferred from the raft to the underneath piles, and also from the piles on the side of the hanging wall to the piles on the footwall side, resulting in compression failure of the piles on the footwall side.


2022 ◽  
Vol 12 (1) ◽  
pp. 1-24
Author(s):  
D. Reid ◽  
R. Fanni ◽  
A. Fourie

The cross-anisotropic nature of soil strength has been studied and documented for decades, including the increased propensity for cross-anisotropy in layered materials. However, current engineering practice for tailings storage facilities (TSFs) does not appear to generally include cross-anisotropy considerations in the development of shear strengths. This being despite the very common layering profile seen in subaerially-deposited tailings. To provide additional data to highlight the strength cross-anisotropy of tailings, high quality block samples from three TSFs were obtained and trimmed to enable Hollow Cylinder Torsional Shear tests to be sheared at principal stress angles of 0 and 45 degrees during undrained shearing. Consolidation procedures were carried out such that the drained rotation of principal stress angle that would precede potential undrained shear events for below-slope tailings was reasonably simulated. The results indicated the significant effects of cross-anisotropy on the undrained strength, instability stress ratio, contractive tendency and brittleness of each of the three tailings types. The magnitude of cross-anisotropy effects seen was generally consistent with previous published data on sands.


2022 ◽  
Vol 12 (1) ◽  
pp. 1-20
Author(s):  
X. Xu ◽  
H. Guo ◽  
M. Li ◽  
H. Fu

In microbially induced calcium carbonate precipitation (MICP) process, it is the precipitated CaCO3 that cements loose sand particles together to improve their mechanical properties. Seashell nacre composed of CaCO3 is a natural product, which is worth researching for its great hardness, strength, and toughness. However, there is no study connecting this natural nacre mineralization with MICP. Therefore, a precedent herein is established to modify the MICP process via the water-soluble matrix (WSM) extracted from nacre, where WSM contributes to the great mechanical properties of nacre. Correspondingly, this study examines the effects of WSM with different concentrations on urease activity and strength as well as microstructure of bio-cemented sand samples. The experimental results show that a small number of WSM (50mg/L) can improve the average strength of bio-cemented sand samples 1.5 times. This is because 50mg/L WSM can significantly improve the urease activity of bacteria meanwhile increasing the Ca2+ utilization rate. Thus, more CaCO3 crystals are precipitated, and the higher UCS of bio-cemented sand samples is achieved. Moreover, the XRD results indicate that the precipitated CaCO3 is almost calcite, and only a little aragonite is detected when the concentration of WSM increases to 100mg/L. Additionally, the SEM images demonstrate that WSM involvement can affect the shapes and sizes of CaCO3 crystals. Overall, this work is an unprecedented exploration imitating nacre that hopefully paves way for future studies.


Sign in / Sign up

Export Citation Format

Share Document