scholarly journals Fire Risk Assessment and Management in Nuclear Power Plants

1993 ◽  
Vol 13 (Suppl) ◽  
pp. S_12-S_39 ◽  
Author(s):  
G. E. Apostolakis
2021 ◽  
Vol 35 (3) ◽  
pp. 59-67
Author(s):  
Jung-Hyun Ryu

The fire risk of a nuclear power plant is evaluated using fixed and transient ignition sources. In terms of the overall fire risk, the proportion of transient ignition sources is very small. However, because the uncertainty due to the difference between the assumptions and the modeling method is relatively large, it is necessary to establish a methodology to address this. In this study, the new transient ignition source evaluation method presented in NUREG/CR-6850, the ignition source frequency revised in NUREG-2169, and the input parameters for transient fire modeling presented in NUREG-2233 were used to evaluate the fire risk assessment for transient ignition sources. In this new evaluation methodology, the fire ignition frequency is quantitatively evaluated based on the characteristics of the area, and an area-based scenario evaluation method considering the location of the transient ignition source is proposed for the evaluation within the area. As a result of applying the new methodology to the switchgear room of a reference nuclear power plant, an approximately 70% risk reduction was confirmed compared to the existing EPRI TR-105928 method. In the future, if fire risk assessment for transient ignition sources in nuclear power plants is applied using the results of this study, it is expected that areas whose control is important in the event of a fire can be determined, which should help reduce highly rated fire risks.


Author(s):  
Pengyi Peng ◽  
Weidong Liu ◽  
Zhichao Yang

Instrumentation and control (I&C) systems in nuclear power plants (NPPs) have the ability to initiate the safety-related functions necessary to shut down the plants and maintain the plants in a safe shutdown condition. I&C systems of low reliability will bring risks to the safe operation of NPPs. A sufficient level of redundancy and diversity of I&C design to ensure the safety is a major focus when designing a new reactor. Usually multiple signal paths are included in an I&C system design. Meanwhile, besides the protection and safety monitoring system (PMS), other sub-systems of I&C such as the diverse actuation system (DAS) will be included as a diverse backup of PMS to perform the functions of reactor trip and engineered safety features actuation systems (ESFAS). However, the construction costs increase as the level of system redundancy and diversity grows. In fact, from the perspective of deterministic theory, an I&C system of only two chains can meet the single failure criterion. So how to obtain the balance of safety and economy is a challenging problem in I&C system designing. Probabilistic Safety Assessment (PSA) is the most commonly used quantitative risk assessment tool for decision-making in selecting the optimal design among alternative options. In this paper, PSA technique was used to identify whether the I&C system design offers adequate redundancy, diversity, and independence with sufficient defense-in-depth and safety margins in the design of a new reactor. Firstly, detailed risk assessment criteria for I&C design were studied and identified in accordance with nuclear regulations. Secondly, different designs were appropriately modeled, and the risk insights were provided, showing the balance of safety and economy of each design. Furthermore, potential design improvements were evaluated in terms of the current risk assessment criterion. In the end, the optimal design was determined, and uncertainty analyses were performed. The results showed that all four designs analyzed in this paper were met the safety goals in terms of PSA, but each design had a different impact on the balance of risk. As the support systems of the NPP we analyzed were relatively weak, loss of off-site power and loss of service water were two main risk contributors. The common cause failure of reactor trip breakers and the sensors of containment pressure were risk-significant. After identifying the major risk factors, the I&C design team can perform subsequent optimizations in the further design based on the PSA results and achieve an optimal balance between safety and economy.


Risk Analysis ◽  
1985 ◽  
Vol 5 (1) ◽  
pp. 33-51 ◽  
Author(s):  
Mardyros Kazarians ◽  
Nathan O. Siu ◽  
George Apostolakis

2018 ◽  
Vol 50 (3) ◽  
pp. 319-326 ◽  
Author(s):  
Changkyung Seong ◽  
Gyunyoung Heo ◽  
Sejin Baek ◽  
Ji Woong Yoon ◽  
Man Cheol Kim

Sign in / Sign up

Export Citation Format

Share Document