scholarly journals Fire Risk Assessment of Transient Ignition Sources in Domestic Nuclear Power Plants

2021 ◽  
Vol 35 (3) ◽  
pp. 59-67
Author(s):  
Jung-Hyun Ryu

The fire risk of a nuclear power plant is evaluated using fixed and transient ignition sources. In terms of the overall fire risk, the proportion of transient ignition sources is very small. However, because the uncertainty due to the difference between the assumptions and the modeling method is relatively large, it is necessary to establish a methodology to address this. In this study, the new transient ignition source evaluation method presented in NUREG/CR-6850, the ignition source frequency revised in NUREG-2169, and the input parameters for transient fire modeling presented in NUREG-2233 were used to evaluate the fire risk assessment for transient ignition sources. In this new evaluation methodology, the fire ignition frequency is quantitatively evaluated based on the characteristics of the area, and an area-based scenario evaluation method considering the location of the transient ignition source is proposed for the evaluation within the area. As a result of applying the new methodology to the switchgear room of a reference nuclear power plant, an approximately 70% risk reduction was confirmed compared to the existing EPRI TR-105928 method. In the future, if fire risk assessment for transient ignition sources in nuclear power plants is applied using the results of this study, it is expected that areas whose control is important in the event of a fire can be determined, which should help reduce highly rated fire risks.

2010 ◽  
Vol 13 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Heinz-Peter Berg ◽  
Matias Krauß

Risk Assessment of Extreme Weather Conditions for Nuclear Power Plants at Tidal RiversThe effects of flooding on a nuclear power plant site may have a major bearing on the safety of the plant and may result in a common cause failure for safety related systems, such as the emergency power supply systems. For river sites with tidal influences, an extreme flood event - tide combined with storm water level set-up - must be assumed. A storm-tide must be covered with an exceeding frequency of 10-4/a. However, the risk assessment regarding the availability of systems and components of a nuclear power plant also includes the situation of extreme low water level of rivers, i. e. below the minimum water level necessary for the supply of the nuclear power plants with cooling water.


Author(s):  
James K. Liming ◽  
David H. Johnson ◽  
Andrew A. Dykes

Commercial nuclear power plant physical security has received much more intensive treatment and regulatory attention since September 11, 2001. In light of advancements made by the nuclear power industry in the field of probabilistic safety assessment (PSA) for its power plants over that last 30 years, and given the many examples of successful applications of risk-informed regulation at U. S. nuclear power plants during recent years, it may well be advisable to apply a “risk-informed” approach to security management at nuclear power plants from now into the future. In fact, plant PSAs developed in response to NRC Generic Letter 88-20 and related requirements are used to help define target sets of critical plant safety equipment in our current security exercises for the industry. With reasonable refinements, plant PSAs can be used to identify, analyze, and evaluate reasonable and prudent approaches to address security issues and associated defensive strategies at nuclear power plants. PSA is the ultimate scenario-based approach to risk assessment, and thus provides a most powerful tool in identifying and evaluating potential risk management decisions. This paper provides a summary of observations of factors that are influencing or could influence cost-effective or “cost-reasonable” security management decision-making in the current political environment, and provides recommendations for the application of PSA tools and techniques to the nuclear power plant operational safety response exercise (OSRE) process. The paper presents a proposed framework for nuclear power plant probabilistic terrorist risk assessment (PTRA) that applies these tools and techniques.


Author(s):  
Meiru Liu ◽  
Qingnan Zhao ◽  
Wei Deng ◽  
Jinyan Du ◽  
Lin Sun

Fire Probabilistic Risk Assessment (PRA) is one of the main methods of fire safety analysis for nuclear power plants (NPPs). At present, the fire PRA under the at-power condition has been widely studied, while the research on the low power and shutdown condition (LPSD) is quite limited. Therefore, in this paper, a second generation NPP on the east coast of China is taken as the research target, and the analysis methods are based on the latest LPSD fire PRA theory in report NUREG/CR-7114. This paper studies the initiating events and ignition frequencies of fire PRA considering the real conditions in LPSD, and established LPSD Fire PRA model, finally obtained the quantitative risk result of the core damage caused by the fire According to the results of this LPSD fire PRA, the fire risk-significant sources and fire risk weakness are found out and the improvement suggestions have been promoted.


2021 ◽  
Author(s):  
Li Liang ◽  
Pan Rong ◽  
Ren Guopeng ◽  
Zhu Xiuyun

Abstract Almost all nuclear power plants in the world are equipped with seismic instrument system, especially the third generation nuclear power plants in China. When the ground motion measured by four time history accelerometers of containment foundation exceeds the preset threshold, the automatic shutdown trigger signal will be generated. However, from the seismic acceleration characteristics, isolated and prominent single high frequency will be generated the acceleration peak, which has no decisive effect on the seismic response, may cause false alarm, which has a certain impact on the smooth operation of nuclear power plant. According to the principle of three elements of ground motion, this paper puts forward a method that first selects the filtering frequency band which accords with the structural characteristics of nuclear power plants, then synthesizes the three axial acceleration time history, and finally selects the appropriate acceleration peak value for threshold alarm. The results show that the seismic acceleration results obtained by this method can well represent the actual magnitude of acceleration, and can solve the problem of false alarm due to the randomness of single seismic wave, and can be used for automatic reactor shutdown trigger signal of seismic acceleration.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022020
Author(s):  
Jiahuan Yu ◽  
Xiaofeng Zhang

Abstract With the development of the nuclear energy industry and the increasing demand for environmental protection, the impact of nuclear power plant radiation on the environment has gradually entered the public view. This article combs the nuclear power plant radiation environmental management systems of several countries, takes the domestic and foreign management of radioactive effluent discharge from nuclear power plants as a starting point, analyses and compares the laws and standards related to radioactive effluents from nuclear power plants in France, the United States, China, and South Korea. In this paper, the management improvement of radioactive effluent discharge system of Chinese nuclear power plants has been discussed.


2018 ◽  
Vol 4 (4) ◽  
pp. 251-256 ◽  
Author(s):  
Sergey Shcheklein ◽  
Ismail Hossain ◽  
Mohammad Akbar ◽  
Vladimir Velkin

Bangladesh lies in a tectonically active zone. Earlier geological studies show that Bangladesh and its adjoining areas are exposed to a threat of severe earthquakes. Earthquakes may have disastrous consequences for a densely populated country. This dictates the need for a detailed analysis of the situation prior to the construction of nuclear power plant as required by the IAEA standards. This study reveals the correlation between seismic acceleration and potential damage. Procedures are presented for investigating the seismic hazard within the future NPP construction area. It has been shown that the obtained values of the earthquake’s peak ground acceleration are at the level below the design basis earthquake (DBE) level and will not lead to nuclear power plant malfunctions. For the most severe among the recorded and closely located earthquake centers (Madhupur) the intensity of seismic impacts on the nuclear power plant site does not exceed eight points on the MSK-64 scale. The existing predictions as to the possibility of a super-earthquake with magnitude in excess of nine points on the Richter scale to take place on the territory of the country indicate the necessity to develop an additional efficient seismic diagnostics system and to switch nuclear power plants in good time to passive heat removal mode as stipulated by the WWER 3+ design. A conclusion is made that accounting for the predicted seismic impacts in excess of the historically recorded levels should be achieved by the establishment of an additional efficient seismic diagnostics system and by timely switching the nuclear power plants to passive heat removal mode with reliable isolation of the reactor core and spent nuclear fuel pools.


Author(s):  
Esko Pekkarinen

Modernisation of control rooms of the nuclear power plants has been a major issue during the last few years. With this as a basis, the BWR plants in Sweden and Finland funded, in co-operation with the Halden Project, an experimental HAMBO BWR simulator project based on the Forsmark 3 plant in Sweden. VTT Energy in Finland developed the simulator models for HAMBO with the aid of their APROS tool, while the operator interface was developed by the Halden Project. The simulator and its performance have been described in other publications [1, 2]. On July 25th 2006 there was a short circuit at Forsmark 1 nuclear power plant when manoeuvring equipment in the 400kV-switch yard. Due to the short circuit, the plant suffered an electrical disturbance that led to scram and failure of two out of four diesel generators. The purpose of the study carried out at VTT in 2007 was to assess the capabilities of the HAMBO BWR simulator to handle Forsmark 1 type of events in different nuclear power plants (Forsmark 3 in this case). The Forsmark 1 incident showed (among other things) that the intention to protect certain components (in this case the UPS-system) can in certain situations affect negatively to the safety functions. It is concluded that most of this type of BWR transients may be simulated to a certain extent using the existing HAMBO- and APROS- models. A detailed modelling of the automation and electric systems is required sometimes if the complex interplay between these systems and the process is to be predicted reliably. The modelling should be plant specific and level of detail should be assessed case-by-case (i.e. what kind of transient is in question, what systems are available, what is the main purpose of the analyses etc.). The thermal-hydraulic models of the APROS-code seem to replicate well the real behaviour of thermal-hydraulic process provided that there is enough information about the transient in consideration.


Sign in / Sign up

Export Citation Format

Share Document