scholarly journals Rigid block and finite element analysis of settlement-induced failure mechanisms in historic masonry wall panels

2019 ◽  
Vol 14 (51) ◽  
pp. 517-533 ◽  
Author(s):  
Raffaele Gagliardo ◽  
Lucrezia Cascini ◽  
Francesco Portioli ◽  
Raffaele Landolfo ◽  
Giovanni Tomaselli ◽  
...  
2005 ◽  
Author(s):  
Bill Shi ◽  
Donald Liu ◽  
Christopher Wiernicki

The emerging global economic needs are driving the designs for the next generation of ocean going vessels. Current ultra-large container carrier (10,000 TEU plus) designs are considerably larger and more complex than any currently in service. Proper and rational classification assessment requires that first principles based direct calculation methods be used to augment the standard classification review. The design philosophy behind the ABS Dynamic Loading Approach enables comprehensive identification of potential failure mechanisms. The scope of the necessary engineering assessment encompass full-ship finite element analysis under non-linear sea loads, spectral fatigue analysis, finite element lashing analysis, free and forced vibration analysis, and transient and impact load analysis. This paper describes key aspects of the DLA design philosophy such as non-linear sea loads, load combinations, various applications derived from full-ship finite element analysis. Several examples are given to highlight some critical failure mechanisms to be considered for ultra-large container carriers.


2011 ◽  
Vol 306-307 ◽  
pp. 733-737
Author(s):  
Xu Dan Dang ◽  
Xin Li Wang ◽  
Hong Song Zhang ◽  
Jun Xiao

In this article the finite element software was used to analyse the values for compressive strength of X-cor sandwich. During the analysis, the failure criteria and materials stiffness degradation rules of failure mechanisms were proposed. The failure processes and failure modes were also clarified. In the finite element model we used the distributions of failure elements to simulate the failure processes. Meanwhile the failure mechanisms of X-cor sandwich were explained. The finite element analysis indicates that the resin regions of Z-pin tips fail firstly and the Z-pins fail secondly. The dominant failure mode is the Z-pin elastic buckling and the propagation paths of failure elements are dispersive. Through contrast the finite element values and test results are consistent well and the error range is -7.6%~9.5%. Therefore the failure criteria and stiffness degradation rules are reasonable and the model can be used to predict the compressive strength of X-cor sandwich.


2013 ◽  
Vol 838-841 ◽  
pp. 284-296
Author(s):  
Yu Hua Wang ◽  
Bei Bei Wang ◽  
Pei Chi ◽  
Jun Dong

The finite element analysis method was adopted to simulate the masonry wall strengthened with steel strips and was verified by comparing with test results. The influence rules of two factors including the cross sectional area of steel strips and vertical compression were investigated. The results show that, as for unreinforced masonry wall, the relationship of the shear capacity of unreinforced masonry wall and the vertical compressive strain is linear under lateral load; the speed of stiffness degeneration is accelerated after the peak point of the curves, but decrease with the increasing of lateral displacement. As for masonry wall strengthened with steel strips, the shear capacity increases significantly, and shows nonlinear relationship with the cross section area of the steel strips and vertical compression; ductility is improved. Finally, a computational formula of shear capacity based on a lot of parametric analysis is proposed to calculate the sectional dimension of steel strips, and it provides theoretical foundation for establishing thorough design method of masonry wall strengthened with steel strips.


Sign in / Sign up

Export Citation Format

Share Document