concrete masonry
Recently Published Documents


TOTAL DOCUMENTS

659
(FIVE YEARS 89)

H-INDEX

27
(FIVE YEARS 4)

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 2922-2935
Author(s):  
Tatheer Zahra ◽  
Julian Thamboo ◽  
Mohammad Asad ◽  
Mengli Song

Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 584
Author(s):  
Hrvoje Krstić ◽  
Ivana Miličević ◽  
Damir Markulak ◽  
Mihaela Domazetović

Hollow concrete masonry blocks made of low strength self-compacting concrete with recycled crushed brick and ground polystyrene as an aggregate (RBC-EP blocks), and their expected structural role as masonry infill in steel frames, has been confirmed in previous research studies, thus the extensive investigation of thermal properties is presented in this paper to fully approve their potential application in practice. The Heat Flow and Temperature Based Method was used to conduct in-situ measurements of the wall thermal transmittance (U-value). The experimental U-values of the wall without insulation varied from 1.363 to 1.782 W/m2·K, and the theoretical value was calculated to be 2.01 W/m2·K. Thermal conductivity of the material used for making RBC-EP blocks was measured in a laboratory by using a heat flow meter instrument. To better understand the thermal performance characteristics of a wall constructed from RBC-EP blocks, a comparison with standard materials currently used and found on the market was performed. Walls constructed from RBC-EP blocks show an improvement of building technology and environmentally based enhancement of concrete blocks, since they use recycled materials. They can replace standard lightweight concrete blocks due to their desired mechanical properties, as well as the better thermal performance properties compared to commonly used materials for building walls.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012184
Author(s):  
Talal Salem ◽  
Mohamad Kazma ◽  
Judy Bitar ◽  
Joseph Moussa ◽  
Dalia Falah

Abstract Global energy demand has been increasing exponentially in the last three decades, which has been exacerbated by climate change. To alleviate the energy load, researchers have been exploring innovative passive techniques to enhance the thermal performance of building envelopes. This research evaluates a novel building envelope solution, which includes the development of a Concrete Masonry Unit that is integrated with bio-based micro-encapsulated Phase Changing Materials. The mechanical behaviour of the enhanced CMU is investigated to study the applicability of PCMs into the no-slump concrete mix. Compatibility with the applicable standards opens a broader prospect for thermal characterization and building performance simulations of PCM enhanced CMU building envelopes.


Sign in / Sign up

Export Citation Format

Share Document