Finite Element Analysis of X-Cor Sandwich's Compressive Strength

2011 ◽  
Vol 306-307 ◽  
pp. 733-737
Author(s):  
Xu Dan Dang ◽  
Xin Li Wang ◽  
Hong Song Zhang ◽  
Jun Xiao

In this article the finite element software was used to analyse the values for compressive strength of X-cor sandwich. During the analysis, the failure criteria and materials stiffness degradation rules of failure mechanisms were proposed. The failure processes and failure modes were also clarified. In the finite element model we used the distributions of failure elements to simulate the failure processes. Meanwhile the failure mechanisms of X-cor sandwich were explained. The finite element analysis indicates that the resin regions of Z-pin tips fail firstly and the Z-pins fail secondly. The dominant failure mode is the Z-pin elastic buckling and the propagation paths of failure elements are dispersive. Through contrast the finite element values and test results are consistent well and the error range is -7.6%~9.5%. Therefore the failure criteria and stiffness degradation rules are reasonable and the model can be used to predict the compressive strength of X-cor sandwich.

Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1454
Author(s):  
Juan Enrique Martínez-Martínez ◽  
Mar Alonso-Martínez ◽  
Felipe Pedro Álvarez Rabanal ◽  
Juan José del Coz Díaz

In the research for sustainable construction, cross-laminated timber (CLT) has gained popularity and become a widely used engineered timber product. However, there are few numerical studies of the structural behaviour of CLT. Among other issues, the orthotropic properties of CLT complicate finite element analysis (FEA). This paper presents a finite element model (FEM) to predict the structural behaviour of CLT beams subjected to sustained flexural loading. This numerical model includes a material model based on the orthotropic material properties of different timber species. Furthermore, the orientation and the properties of each layer are considered. Most of the previous studies simulate CLT beams as a homogeneous material. However, in this work the CLT beam is modelled as a composite material made up of five layers with different orientations and properties. Bonded contacts are used to define the interaction between layers. In addition, nonlinearities, such as large displacement, are used to simulate the behaviour of CLT beams. The model provides the load-displacement relationship and stress concentration. Tsai-Wu failure criteria is used in the simulation to predict the failure modes of the CLT beams studied.


2015 ◽  
Vol 733 ◽  
pp. 591-594
Author(s):  
Yong Zhen Zhu ◽  
Kuo Yang ◽  
Qi Yang ◽  
Yun De Zhao

The CAD software was used to establish 3D model of frame of dump truck, and the finite element model was established through Hyper Mesh. The stress distributions of the frame in vertical accelerating, turning, twisting and climbing conditions were computed through finite element software when the dump truck was loaded 80t. The result is consistent with the actual situation of the frame, which proved that the approach of finite element analysis is feasible. And we proposed the improved method of the frame according to finite element results.


2014 ◽  
Vol 578-579 ◽  
pp. 278-281
Author(s):  
Pi Yuan Xu ◽  
Qian Chen ◽  
Ya Feng Xu

In this paper, in order to understand fully the development of failure mechanism, bearing capacity and seismic performance of the steel H-beams and composite concrete filled steel tubular (CFST) column joints strengthened by outside strengthening ring, in the space zone the effects of changing the axial compression ratio is investigated. A 3D joint finite element model is built up by finite element software ABAQUS, the elastic-plastic finite element analysis is carried through numerical modeling process. The analysis results showed that low axial compression ratio has a little influence on the bearing capacity; with the increase of axial pressure the bearing capacity will decrease in a high axial compression ratio, moreover the failure pattern of joint changes from beam end to column end. The ductility of the specimens is decreased by raising axial compression ratio.


2002 ◽  
Vol 02 (01) ◽  
pp. 135-149
Author(s):  
MELANIE G. VIOLETTE

The strength of unidirectional composites is often lower in compression than in tension, making compressive strength an especially important design criterion. The compressive strength is sensitive to the presence of notches and stress gradients. Finite element analysis was used to determine the strain gradient at a shallow circular notch in one edge of a 0 degree carbon/epoxy composite specimen, and to predict failure due to a localized buckling instability. The specimen was first analyzed with a "global" model of the full specimen, and displacements along a curve near the notch were stored and used as boundary conditions for a more detailed "submodel" in the immediate vicinity of the notch. At the onset of instability, a displaced plot of the finite element model shows oscillations in the transverse direction along the arc of the notch, just off the centerline, which is essentially at the same location where failure initiated in the test specimens. Results are compared with experimental values for failure stress and notch strain concentration for a range of loading rates and test temperatures.


2014 ◽  
Vol 656 ◽  
pp. 288-297
Author(s):  
Krishna Murari Pandey ◽  
Abhijit Dey ◽  
P.L. Choudhury

The aim of present study was investigate the buckling pressure of moderately thick-walled filament-wound carbon–epoxy stiffened composite pressure vessel subjected to external hydrostatic pressure through finite element analysis and compare the result with un-stiffened filament wound carbon/epoxy composite pressure vessel used in under water vehicle applications. The winding angles were [±30/90] FW, [±45/90] FW and [±60/90] FW. ANSYS 14.0 APDL, a commercial finite element software package successfully predicted the buckling pressure of filament-wound composite pressure vessel with a deviation much higher than the results of un-stiffened filament wound composite cylinder .All the finite element analysis shows that the composite pressure vessel with winding pattern [±60/90] FW has the higher value of critical buckling pressure. Major failure modes in both the analysis were dominated by the helical winding angles.


2014 ◽  
Vol 684 ◽  
pp. 341-346
Author(s):  
Heng Yi Yuan

The shaft as an important parts of automobile transmission system, in the process of the car have the effect of rotational speed and torque. Due to the structural characteristics of its low frequency, small stiffness, universal joint, such as the existence of the additional moment drive shaft inevitably exist when high speed vibration phenomenon. So the shaft vibration problems to deal with the vehicle ride comfort, comfort and dynamic performance has important significance. On the basis of the finite element software ANSYS, the physical design of drive shaft. Analyzes the mapping grid finite element model of transmission shaft, facilitate accurate transmission shaft strength calculation. Based on the inherent frequency and vibration model of finite element method to calculate transmission shaft, using experimental modal technology for modal analysis of the shaft, the test results verify the reliability of the finite element model. On this basis, the drive shaft assembly constraint modal finite element analysis, can be used as the basis of further research.


2012 ◽  
Vol 262 ◽  
pp. 390-394 ◽  
Author(s):  
Wei Yuan ◽  
Wen Cai Xu ◽  
Gai Mei Zhang ◽  
Li Hua Xie

The finite element model of a 0201 V-shaped, U-shaped, and UV-shaped single corrugated board corrugated boxes are established. The stress distribution and strain of the three types of waveform corrugated box to withstand the pressure of the top surface stacking are calculated. Three kinds of corrugated board compression are analyzed. Analysis of the structure shows that the V-shaped corrugated board has good rigidity, U-type corrugated box has good cushioning properties, and the range during which the UV type is a better choice. This is consistent with the experimental results, prove the validity of the finite element analysis, and provide data basis for optimization design of the shape of the corrugated board corrugated waveform.


2011 ◽  
Vol 403-408 ◽  
pp. 3647-3651
Author(s):  
Xu Dan Dang ◽  
Shao Jie Shi ◽  
Jun Xiao

Through the analysis of micro-structures of Z-pin ends the basic hypothesis of elliptic configuration of the resin regions around Z-pin ends were proposed. The finite element model of the tensile modulus of X-cor sandwich was established and the finite element software ANSYS was used in the computation. The effects of Z-pin angle, diameter and density on the tensile modulus of X-cor sandwich were analyzed. Via the analysis of finite element model, the influencing trends of parameters of X-cor sandwich on the tensile modulus are achieved and the error range is ±10%. So the rationality of the proposed finite element model is verified and the finite element model can be used to forecast the tensile modulus of X-cor sandwich.


2011 ◽  
Vol 328-330 ◽  
pp. 1113-1117
Author(s):  
Xu Dan Dang ◽  
Shao Jie Shi ◽  
Jin San Jiang ◽  
Jun Xiao

Through the observation of photomicrographs of resin regions around Z-pin ends, the basic hypothesis of the elliptic configuration of resin regions in the X-cor sandwich were proposed. The parametric equations for describing the microscopic structures of resin regions were given. Then the geometric analysis model of X-cor sandwich was established. The finite element software ANSYS was used to establish the finite element model of the shear modulus and the shear modulus was calculated. The error range of finite element analysis is between ±10%. So the rationality of finite element model is verified and the finite element model can be used to forecast the shear modulus.


2017 ◽  
Vol 52 (4) ◽  
pp. 215-225
Author(s):  
Zhao Chun-jiang ◽  
Liu Yong-feng ◽  
Zhang Fei-tao ◽  
Wang Zheng-yi ◽  
Gui Hai-lian

Axially heavy-loaded screw pairs are widely used in rolling mill press systems and other heavy equipment. During the working process, the nut is pressed at both ends, which causes equivalent stress at the thread roots in a U-shaped distribution along the height. Thread roots at the ends tend to suffer fracture failure when the equivalent stress is too great. In this article, the finite element software ANSYS is used to establish a 3D model of screw pairs and analyse bearing characteristics. A new structure based on the results of finite element analysis, which improves U-shaped stress distribution, is proposed for the axially uniform-loaded nut, with a different strain–displacement relationship between the nut matrix and the thread teeth. Such a relationship can greatly reduce peak stress at the thread roots of the nut on both ends. Experiments are conducted on the nut using the electrometric method. Results are compared with the finite element results to directly verify the reliability of the finite element model of ordinary screw pairs and indirectly verify the reliability of the structural model of new screw pairs.


Sign in / Sign up

Export Citation Format

Share Document