scholarly journals Strain-gradient effect on the crack tip dislocations density

2020 ◽  
Vol 14 (54) ◽  
pp. 192-201
Author(s):  
Valery Shlyannikov ◽  
Andrey Tumanov ◽  
Ruslan Khamidullin

In this study, the influence of a material’s plastic properties on the crack tip fields and dislocation density behavior is analytically and numerically analyzed using the conventional mechanism-based strain-gradient plasticity (CMSGP) theory established using the Taylor model. The material constitutive equation is implemented in a commercial finite element code by a user subroutine, and the crack tip fields are evaluated with novel parameters in the form of the intrinsic material length, characterizing the scale over which gradient effects become significant. As a consequence of the strain-gradient contribution, FE results show a significant increase in the magnitude of the stress fields of CMSGP when the material length parameter is considered. It is found that the density of geometrically necessary dislocations (GND) is large around the crack tip, but it rapidly decreases away from the crack tip. On the contrary, the density of statistically stored dislocations (SSD) is not as large as geometrically necessary dislocations around the crack tip, but it decreases much slower than GND away from the crack tip. A couple effect of material work hardening and the crack tip distance is identified.

2013 ◽  
Vol 27 (18) ◽  
pp. 1350083 ◽  
Author(s):  
Y. TADI BENI ◽  
M. ABADYAN

Experiments reveal that mechanical behavior of nanostructures is size-dependent. Herein, the size dependent pull-in instability of torsional nano-mirror is investigated using strain gradient nonclassic continuum theory. The governing equation of the mirror is derived taking the effect of electrostatic Coulomb and molecular van der Waals (vdW) forces into account. Variation of the rotation angle of the mirror as a function of the applied voltage is obtained and the instability parameters i.e., pull-in voltage and pull-in angle are determined. Nano-mirrors with square and circular cross-sectional beams are investigated as case studies. It is found that when the thickness of the torsional nano-beam is comparable with the intrinsic material length scales, size effect can substantially increase the instability parameters of the rotational mirror. Moreover, the effect of vdW forces on the size-dependent pull-in instability of the system is discussed. The proposed model is able to predict the experimental results more accurately than the previous classic models and reduce the gap between experiment and previous theories.


1999 ◽  
Vol 64 (5) ◽  
pp. 625-648 ◽  
Author(s):  
J.Y. Chen ◽  
Y. Wei ◽  
Y. Huang ◽  
J.W. Hutchinson ◽  
K.C. Hwang

Sign in / Sign up

Export Citation Format

Share Document