Global zero-relaxation limit of the non-isentropic Euler–Poisson system for ion dynamics

2020 ◽  
Vol 120 (3-4) ◽  
pp. 301-318
Author(s):  
Yuehong Feng ◽  
Xin Li ◽  
Shu Wang

This paper is concerned with smooth solutions of the non-isentropic Euler–Poisson system for ion dynamics. The system arises in the modeling of semi-conductor, in which appear one small parameter, the momentum relaxation time. When the initial data are near constant equilibrium states, with the help of uniform energy estimates and compactness arguments, we rigorously prove the convergence of the system for all time, as the relaxation time goes to zero. The limit system is the drift-diffusion system.

2000 ◽  
Vol 10 (03) ◽  
pp. 351-360 ◽  
Author(s):  
CORRADO LATTANZIO

The aim of this paper is the study of the relaxation limit of the 3-D bipolar hydrodynamic model for semiconductors. We prove the convergence for the weak solutions to the bipolar Euler–Poisson system towards the solutions to the bipolar drifthyphen;diffusion system, as the relaxation time tends to zero.


Author(s):  
Jean Dolbeault ◽  
Xingyu Li

Abstract This paper is devoted to logarithmic Hardy–Littlewood–Sobolev inequalities in the 2D Euclidean space, in the presence of an external potential with logarithmic growth. The coupling with the potential introduces a new parameter, with two regimes. The attractive regime reflects the standard logarithmic Hardy–Littlewood–Sobolev inequality. The 2nd regime corresponds to a reverse inequality, with the opposite sign in the convolution term, which allows us to bound the free energy of a drift–diffusion–Poisson system from below. Our method is based on an extension of an entropy method proposed by E. Carlen, J. Carrillo, and M. Loss, and on a nonlinear diffusion equation.


2013 ◽  
Vol 854 ◽  
pp. 29-34 ◽  
Author(s):  
Dmitry Osintsev ◽  
V. Sverdlov ◽  
Siegfried Selberherr

We consider the impact of the surface roughness and phonon induced relaxation on transport and spin characteristics in ultra-thin SOI MOSFET devices. We show that the regions in the momentum space, which are responsible for strong spin relaxation, can be efficiently removed by applying uniaxial strain. The spin lifetime in strained films can be improved by orders of magnitude, while the momentum relaxation time determining the electron mobility can only be increased by a factor of two.


1995 ◽  
Vol 05 (04) ◽  
pp. 519-527 ◽  
Author(s):  
PETER A. MARKOWICH ◽  
CHRISTIAN SCHMEISER

A Boltzmann equation for semiconductors is considered. Physical assumptions include the parabolic band approximation and a new relaxation time model for electron-phonon interaction. Thermal equilibrium distributions for this scattering mechanism are products of Maxwellian distributions with periodic functions of the energy, where the period is the energy of a phonon. The hydrodynamic limit is considered and a drift-diffusion model is derived by formal asymptotic methods.


Sign in / Sign up

Export Citation Format

Share Document