scholarly journals Influence of HVDC Transmission on DC Bias of AC Grid and Its Treatment

2021 ◽  
Author(s):  
Ruifeng Zhan ◽  
Yuying Hu ◽  
Fan Li ◽  
Zhou Mi ◽  
Lingpeng Dong

With the rapid development of China’s electric power industry, the high-voltage and long-distance direct current (DC) transmission effectively solved the problem of uneven power distribution. When the high voltage direct current transmission is in unipolar operation or bipolar asymmetric operation, part of the DC current will flow into the transformer winding through the grounded neutral point, which will cause the DC bias problem. This article used CDEGS software for modeling, and introduced the process of CDEGS software for DC bias simulation modeling. In this paper, the DC bias model of regional power grid is first established, based on the Zhejiang power grid topology and the test soil resistivity date. Then the DC bias currents of the transformers are calculated, and finally the corresponding treatment measures are proposed. According to the governance measures, this article adjusted the simulation model. The calculation results show that the treatment measures have good effects, which can provide an important reference for the future treatment of transformer DC bias.

The High Voltage Direct Current (HVDC) transmission framework is progressively utilized and quickly creating in the parts of long separation and huge limit control transmission. An epic voyaging wave-based security plot for bipolar HVDC boundary is furnished in this paper. The insurance dependent on voyaging wave utilized as the primary assurance for HVDC transmission boundary. MATLAB model is used to extract the results from various conditions.


FACETS ◽  
2017 ◽  
Vol 1 (1) ◽  
pp. 17-26 ◽  
Author(s):  
P. Sanjeevikumar ◽  
Frede Blaabjerg

This short communication focuses on exploiting the inherent advantages of discrete wavelet transformation (DWT) as a diagnostic tool for post-processing and for identifying the faults that occur in the standard high-voltage direct-current (HVDC) transmission network. In particular, a set of investigations are developed and examined for single-line-to-ground fault on the generation and on the load side converter, and DC-link fault. For this purpose, a standard 12-pulse line-commutated converter (LCC)-HVDC transmission network along with the DWT algorithm is numerically modeled in the MATLAB/PLECS simulation software. Furthermore, in this paper, a set of designed faulty conditions are predicted using the output of DWT and the results of numerical simulation are presented. Results are in good agreement with expectations to prove that DWT is an effective tool for fault diagnostics.


2021 ◽  
Vol 257 ◽  
pp. 01038
Author(s):  
Weijian Peng ◽  
Qi Liu ◽  
Li Liang ◽  
Wenqi Jiang ◽  
Zhuoyuan Zhang

The converter transformer plays a critical role in the high-voltage direct current (HVDC) transmission system, which connects but separates the AC grids and the converter. This paper briefly introduced the essential design requirement of the HVDC converter transformer in a system at ±800kV level and analyzed the DC bias influence on the transformer. The DC bias current effect simulations are analyzed in MATLAB and ANSYS Maxwell in this paper, respectively.


2012 ◽  
Vol 203 ◽  
pp. 355-359
Author(s):  
Peng Fei Xu

In order to make the development and application of HVDC transmission get better, the author discussed the advantages and disadvantages of HVDC transmission in detail, and proposed his own idea on the improvement of HVDC transmission.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2395 ◽  
Author(s):  
Xiangyu Pei ◽  
Guangfu Tang ◽  
Shengmei Zhang

Protection for transmission lines is one of crucial problems that urgently to be solved in constructing the future high-voltage and large-capacity voltage-sourced converter based high voltage direct current (VSC-HVDC) systems. In order to prevent the DC line fault from deteriorating further due to the failure of main protection, a novel pilot protection principle for VSC-HVDC transmission lines is proposed in this paper. The proposed protection principle is based on characteristics of modulus traveling-wave (TW) currents. Firstly, the protection starting-up criterion is constructed by using the absolute value of the 1-mode TW current gradient. Secondly, the fault section identification is realized by comparing the polarities of wavelet transform modulus maxima (WTMM) of 1-mode initial TW currents acquired from both terminals of the DC line. Then, the selection of fault line is actualized according to the polarity of WTMM of local 0-mode initial reverse TW current. A four-terminal VSC-based DC grid electromagnetic transient model based on the actual engineering parameters is built to assess the performance of the proposed pilot protection principle. Simulation results for different cases prove that the proposed pilot protection principle is excellent in reliability, selectivity, and robustness. Moreover, the data synchronization is not required seriously. Therefore, the proposed novel pilot protection principle can be used as a relatively perfect backup protection for VSC-HVDC transmission lines.


Sign in / Sign up

Export Citation Format

Share Document