Chameleon Hash Functions and One-Time Signature Schemes from Inner Automorphism Groups

2013 ◽  
Vol 126 (1) ◽  
pp. 103-119 ◽  
Author(s):  
Ping Pan ◽  
Licheng Wang ◽  
Yixian Yang ◽  
Yuanju Gan ◽  
Lihua Wang ◽  
...  
2020 ◽  
Vol 510 ◽  
pp. 155-164 ◽  
Author(s):  
Mojtaba Khalili ◽  
Mohammad Dakhilalian ◽  
Willy Susilo

Author(s):  
Yongzhi Luan

Simply reducible groups are closely related to the eigenvalue problems in quantum theory and molecular symmetry in chemistry. Classification of simply reducible groups is still an open problem which is interesting to physicists. Since there are not many examples of simply reducible groups in literature at the moment, we try to find some examples of simply reducible groups as candidates for the classification. By studying the automorphism and inner automorphism groups of symmetric groups, dihedral groups, Clifford groups and Coxeter groups, we find some new examples of candidates. We use the computer algebra system GAP to get most of these automorphism and inner automorphism groups.


1995 ◽  
Vol 118 (2) ◽  
pp. 207-213 ◽  
Author(s):  
M. Shirvani

Let G be a finite group of automorphisms of an associative ring R. Then the inner automorphisms (x↦ u−1xu = xu, for some unit u of R) contained in G form a normal subgroup G0 of G. In general, the Galois theory associated with the outer automorphism group G/G0 is quit well behaved (e.g. [7], 2·3–2·7, 2·10), while little group-theoretic restriction on the structure of G/G0 may be expected (even when R is a commutative field). The structure of the inner automorphism groups G0 does not seem to have received much attention so far. Here we classify the finite groups of inner automorphisms of division rings, i.e. the finite subgroups of PGL (1, D), where D is a division ring. Such groups also arise in the study of finite collineation groups of projective spaces (via the fundamental theorem of projective geometry, cf. [1], 2·26), and provide examples of finite groups having faithful irreducible projective representations over fields.


Author(s):  
Olivier Blazy ◽  
Saqib A. Kakvi ◽  
Eike Kiltz ◽  
Jiaxin Pan

2002 ◽  
Vol 14 (07n08) ◽  
pp. 649-673 ◽  
Author(s):  
AKITAKA KISHIMOTO

We present two types of result for approximately inner one-parameter automorphism groups (referred to as AI flows hereafter) of separable C*-algebras. First, if there is an irreducible representation π of a separable C*-algebra A such that π(A) does not contain non-zero compact operators, then there is an AI flow α such that π is α-covariant and α is far from uniformly continuous in the sense that α induces a flow on π(A) which has full Connes spectrum. Second, if α is an AI flow on a separable C*-algebra A and π is an α-covariant irreducible representation, then we can choose a sequence (hn) of self-adjoint elements in A such that αt is the limit of inner flows Ad eithn and the sequence π(eithn) of one-parameter unitary groups (referred to as unitary flows hereafter) converges to a unitary flow which implements α in π. This latter result will be extended to cover the case of weakly inner type I representations. In passing we shall also show that if two representations of a separable simple C*-algebra on a separable Hilbert space generate the same von Neumann algebra of type I, then there is an approximately inner automorphism which sends one into the other up to equivalence.


2013 ◽  
Vol 27 (4) ◽  
pp. 799-823 ◽  
Author(s):  
Mihir Bellare ◽  
Todor Ristov

2007 ◽  
Vol 17 (05n06) ◽  
pp. 1085-1106 ◽  
Author(s):  
G. MASHEVITZKY ◽  
B. I. PLOTKIN

Let U be a universal algebra. An automorphism α of the endomorphism semigroup of U defined by α(φ) = sφs-1 for a bijection s : U → U is called a quasi-inner automorphism. We characterize bijections on U defining such automorphisms. For this purpose, we introduce the notion of a pre-automorphism of U. In the case when U is a free universal algebra, the pre-automorphisms are precisely the well-known weak automorphisms of U. We also provide different characterizations of quasi-inner automorphisms of endomorphism semigroups of free universal algebras and reveal their structure. We apply obtained results for describing the structure of groups of automorphisms of categories of free universal algebras, isomorphisms between semigroups of endomorphisms of free universal algebras, automorphism groups of endomorphism semigroups of free Lie algebras etc.


Sign in / Sign up

Export Citation Format

Share Document