Energy expenditure and walking ability in stroke patients: Their improvement by ankle-foot orthoses

2009 ◽  
Vol 17 (2) ◽  
pp. 57-62 ◽  
Author(s):  
Noriaki Maeda ◽  
Junichi Kato ◽  
Yuji Azuma ◽  
Sou Okuyama ◽  
Satoshi Yonei ◽  
...  
2010 ◽  
Vol 34 (3) ◽  
pp. 327-335 ◽  
Author(s):  
Jaap Harlaar ◽  
Merel Brehm ◽  
Jules G. Becher ◽  
Daan J. J. Bregman ◽  
Jaap Buurke ◽  
...  

Ankle Foot Orthoses (AFOs) to promote walking ability are a common treatment in patients with neurological or muscular diseases. However, guidelines on the prescription of AFOs are currently based on a low level of evidence regarding their efficacy. Recent studies aiming to demonstrate the efficacy of wearing an AFO in respect to walking ability are not always conclusive. In this paper it is argued to recognize two levels of evidence related to the ICF levels. Activity level evidence expresses the gain in walking ability for the patient, while mechanical evidence expresses the correct functioning of the AFO. Used in combination for the purpose of evaluating the efficacy of orthotic treatment, a conjunct improvement at both levels reinforces the treatment algorithm that is used. Conversely, conflicting outcomes will challenge current treatment algorithms and the supposed working mechanism of the AFO. A treatment algorithm must use relevant information as an input, derived from measurements with a high precision. Its result will be a specific AFO that matches the patient's needs, specified by the mechanical characterization of the AFO footwear combination. It is concluded that research on the efficacy of AFOs should use parameters from two levels of evidence, to prove the efficacy of a treatment algorithm, i.e., how to prescribe a well-matched AFO.


2015 ◽  
Vol 24 (6) ◽  
pp. 1312-1316 ◽  
Author(s):  
Shinichiro Maeshima ◽  
Hideto Okazaki ◽  
Sayaka Okamoto ◽  
Shiho Mizuno ◽  
Naoki Asano ◽  
...  

2018 ◽  
Vol 42 (5) ◽  
pp. 544-553 ◽  
Author(s):  
Sumiko Yamamoto ◽  
Souji Tanaka ◽  
Naoyuki Motojima

Background: The effect of plantar flexion resistance of ankle–foot orthoses on the ankle and knee joints is well known, but its effect on the hip joint and upper body movement during the gait of stroke patients remains unclear. Objectives: To compare the effect of an ankle–foot orthosis with plantar flexion stop and an ankle–foot orthosis with plantar flexion resistance on the gait of stroke patients in the subacute phase. Study design: Randomized controlled trial. Methods: A total of 42 stroke patients (mean age = 59.9 ± 10.9 years, 36 men and 4 women) in the subacute phase were randomized to each ankle–foot orthosis group in a parallel controlled trial with no blinding. Patients received gait training from physiotherapists using the specified ankle–foot orthosis for 2 weeks. Shod gait without an ankle–foot orthosis before training and gait with an ankle–foot orthosis after training were measured by three-dimensional motion analysis. Results: A total of 20 patients were analyzed in each group. Significant differences were found in pelvic and thoracic tilt angles between the two groups. Compared with the gait without an ankle–foot orthosis, the pelvis showed forward tilt when patients walked with an ankle–foot orthosis with plantar flexion stop, and the thorax showed decreased forward tilt when the patients walked with an ankle–foot orthosis with plantar flexion resistance. Conclusion: The difference in ankle–foot orthosis function in sagittal plantar flexion resistance affected the alignment of the upper body and the pelvis during the gait of stroke patients in the subacute phase. Clinical relevance Maintaining upright posture is important in gait rehabilitation. The findings of this study suggest that the ankle–foot orthosis with plantar flexion resistance facilitated better alignment of the upper body and pelvis during the gait of stroke patients in subacute phase. This type of ankle–foot orthosis could be beneficial for patients with malalignment of the upper body and pelvis.


PM&R ◽  
2012 ◽  
Vol 4 ◽  
pp. S350-S350
Author(s):  
Noel Rao ◽  
Alexander S. Aruin ◽  
Daniel Hasso ◽  
Priyan Perera ◽  
Jason Wening

Sign in / Sign up

Export Citation Format

Share Document