3D RFEC simulations for the in-service inspection of steam generator tubes in fast breeder reactors

2010 ◽  
Vol 33 (3-4) ◽  
pp. 1165-1171 ◽  
Author(s):  
Ovidiu Mihalache ◽  
Toshihiko Yamaguchi ◽  
Masashi Ueda ◽  
Shinya Miyahara
1984 ◽  
Vol 65 (1) ◽  
pp. 92-101 ◽  
Author(s):  
George J. Licina ◽  
Dwight R. Springer ◽  
Prodyot Roy

Author(s):  
Jae Bong Lee ◽  
Jai Hak Park ◽  
Hong-Deok Kim ◽  
Han-Sub Chung ◽  
Tae Ryong Kim

A statistical assessment model for structural integrity of steam generator tubes was proposed using Monte Carlo method. The growth of flaws in steam generator tubes was predicted using statistical approaches. The statistical parameters that represent the characteristics of flaw growth and initiation were derived from in-service inspection (ISI) non-destructive evaluation (NDE) data. Based on the statistical approaches, flaw growth models were proposed and applied to predict distribution of flaw size at the end of cycle (EOC). Because NDE measurement results differ from that of real ones in steam generator tubes, a simple method for predicting the physical number of flaws from periodic in-service inspection data was proposed. The probabilistic flaw growth rate was calculated from the in-service non-destructive inspection data. And the statistical growth of flaw was simulated using the Monte Carlo method. Probabilistic distributions of the flaw size and the probability of burst were obtained from numerously repeated simulations using the proposed assessment model.


2021 ◽  
Vol 63 (10) ◽  
pp. 585-591
Author(s):  
G Perumalsamy ◽  
P Visweswaran ◽  
D Jagadishan ◽  
S Joseph Winston ◽  
S Murugan

The steam generator (SG) tubes of the prototype fast breeder reactor (PFBR) located in Kalpakkam, India, need to be periodically inspected using the remote field eddy current (RFEC) technique. During the pre-service inspection of the SG tubes, it was found that the RFEC probes experienced frequent mechanical breakages. To avoid these failures, changes in the existing structural design of the RFEC probe were required. A helical groove design was proposed to obtain a smooth transition in the variation of stress across the probe during the inspection. It was difficult to calculate the flexural stiffness of the proposed helical geometry probe due to the varying cross-section along its length. In this paper, the smearing approach adopted to calculate the stiffness of the RFEC probe and the sensitivity analysis carried out to determine the optimal design of the probe are discussed. A probe was fabricated based on the helical groove design and tested to qualify its suitability for the SG inspection. The RFEC probe with helical grooves was employed for the pre-service inspection of the SG tubes of the PFBR. More than 200 tubes have been inspected using the proposed design and no mechanical failure of the probe has been observed.


Author(s):  
J. J. Laidler ◽  
B. Mastel

One of the major materials problems encountered in the development of fast breeder reactors for commercial power generation is the phenomenon of swelling in core structural components and fuel cladding. This volume expansion, which is due to the retention of lattice vacancies by agglomeration into large polyhedral clusters (voids), may amount to ten percent or greater at goal fluences in some austenitic stainless steels. From a design standpoint, this is an undesirable situation, and it is necessary to obtain experimental confirmation that such excessive volume expansion will not occur in materials selected for core applications in the Fast Flux Test Facility, the prototypic LMFBR now under construction at the Hanford Engineering Development Laboratory (HEDL). The HEDL JEM-1000 1 MeV electron microscope is being used to provide an insight into trends of radiation damage accumulation in stainless steels, since it is possible to produce atom displacements at an accelerated rate with 1 MeV electrons, while the specimen is under continuous observation.


Sign in / Sign up

Export Citation Format

Share Document