scholarly journals PROC Gene

2020 ◽  
Author(s):  
Keyword(s):  

2000 ◽  
Vol 107 (5) ◽  
pp. 458-465 ◽  
Author(s):  
K. Shamsher ◽  
A. Chuzhanova ◽  
Brad Friedman ◽  
A. Scopes ◽  
Anwar Alhaq ◽  
...  


2020 ◽  
Vol 185 ◽  
pp. 153-159
Author(s):  
Anne Winther-Larsen ◽  
Alisa D. Kjaergaard ◽  
Ole H. Larsen ◽  
Anne-Mette Hvas ◽  
Peter H. Nissen


1995 ◽  
Vol 6 (4) ◽  
pp. 317-321 ◽  
Author(s):  
D. Scopes ◽  
L-P. Berg ◽  
M. Krawczak ◽  
V. V. Kakkar ◽  
D. N. Cooper


2010 ◽  
Vol 89 (8) ◽  
pp. 835-836 ◽  
Author(s):  
Navin Pai ◽  
Shrimati Shetty ◽  
Kanjaksha Ghosh


2012 ◽  
Vol 34 (2) ◽  
pp. e19-e21 ◽  
Author(s):  
Aaron Wei-Min Tan ◽  
Joyce Siong-See Lee ◽  
Zacharias A. D. Pramono ◽  
Wei-Sheng Chong


2004 ◽  
Vol 76 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Woei Tsay ◽  
Ming-Ching Shen
Keyword(s):  


2008 ◽  
Vol 54 (3) ◽  
pp. 231-233 ◽  
Author(s):  
PJ Hallam ◽  
P. Mannucci ◽  
A. Tripodi ◽  
D. Bevan ◽  
B. Lawsen ◽  
...  


2012 ◽  
Vol 91 (11) ◽  
pp. 1829-1830 ◽  
Author(s):  
Sang Hyuk Park ◽  
Seongsoo Jang ◽  
Hye-Kyung Yang ◽  
Hyoeun Shim ◽  
Chan-Jeoung Park ◽  
...  


Blood ◽  
1996 ◽  
Vol 87 (9) ◽  
pp. 3731-3737 ◽  
Author(s):  
CJ Formstone ◽  
PJ Hallam ◽  
EG Tuddenham ◽  
J Voke ◽  
M Layton ◽  
...  

Molecular genetic and phenotypic analyses were performed in a highly unusual case of combined protein S and protein C deficiency manifesting in a family in which a child had died perinatally from renal vein thrombosis. Antenatal diagnosis in a second pregnancy was initially performed by indirect restriction fragment length polymorphism (RFLP) tracking using a neutral dimorphism within the PROS gene and served to exclude severe protein S deficiency. Am umbilical vein blood sample at 22 weeks gestation showed isolated protein C deficiency. This pregnancy proceeded to a full-term delivery without thrombotic complications. Molecular genetic analysis of the PROC and PROS gene segregating in the family then yielded one PROC gene lesion in the father and two PROS gene lesions, one in each parent. These lesions were shown to segregate with the respective deficiency states through the family pedigree. Analysis of DNA from paraffin-embedded liver tissue taken from the deceased child showed the presence of both PROS mutations, as well as the PROC mutation. Genotypic analysis of the second child showed a PROC mutation, but neither PROS mutation consistent with its possession of normal protein S levels and a low/borderline protein C level. Antenatal diagnosis was then performed in a third pregnancy by direct mutation detection. However, although the fetus carried only the paternal PROS and PROC gene lesions, the child developed renal thrombosis in utero. It may be that a further genetic lesion at a third locus still remains to be defined. Alternatively, the intrauterine development of thrombosis in this infant could have been caused, at least in part by a transplacental thrombotic stimulus arising in the protein S-deficient maternal circulation. This analysis may, therefore, serve as a warning against extrapolating too readily from genotype to phenotype in families with a complex thrombotic disorder.



Sign in / Sign up

Export Citation Format

Share Document