frameshift mutation
Recently Published Documents


TOTAL DOCUMENTS

1014
(FIVE YEARS 229)

H-INDEX

55
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
pp. 13
Author(s):  
Figen Seymen ◽  
Hong Zhang ◽  
Yelda Kasimoglu ◽  
Mine Koruyucu ◽  
James P. Simmer ◽  
...  

Amelogenesis imperfecta (AI) is a rare genetic condition affecting the quantity and/or quality of tooth enamel. Hypomaturation AI is characterized by brownish-yellow discoloration with increased opacity and poorly mineralized enamel prone to fracture and attrition. We recruited three families affected by hypomaturation AI and performed whole exome sequencing with selected individuals in each family. Bioinformatic analysis and Sanger sequencing identified and confirmed mutations and segregation in the families. Family 1 had a novel homozygous frameshift mutation in GPR68 gene (NM_003485.3:c.78_83delinsC, p.(Val27Cysfs*146)). Family 2 had a novel homozygous nonsense mutation in SLC24A4 gene (NM_153646.4:c.613C>T, NP_705932.2:p.(Arg205*)). Family 3 also had a homozygous missense mutation in SLC24A4 gene which was reported previously (c.437C>T, p.(Ala146Val)). This report not only expands the mutational spectrum of the AI-causing genes but also improves our understanding of normal and pathologic amelogenesis.


2021 ◽  
Vol 14 (12) ◽  
pp. 1843-1851
Author(s):  
Muhammad Dawood ◽  
◽  
Taj Ud Din ◽  
Irfan Ullah Shah ◽  
Niamat Khan ◽  
...  

AIM: To investigate the genetic basis of autosomal recessive retinitis pigmentosa (arRP) in two consanguineous/ endogamous Pakistani families. METHODS: Whole exome sequencing (WES) was performed on genomic DNA samples of patients with arRP to identify disease causing mutations. Sanger sequencing was performed to confirm familial segregation of identified mutations, and potential pathogenicity was determined by predictions of the mutations’ functions. RESULTS: A novel homozygous frameshift mutation [NM_000440.2:c.1054delG, p. (Gln352Argfs*4); Chr5:g.149286886del (GRCh37)] in the PDE6A gene in an endogamous family and a novel homozygous splice site mutation [NM_033100.3:c.1168-1G>A, Chr10:g.85968484G>A (GRCh37)] in the CDHR1 gene in a consanguineous family were identified. The PDE6A variant p. (Gln352Argfs*4) was predicted to be deleterious or pathogenic, whilst the CDHR1 variant c.1168-1G>A was predicted to result in potential alteration of splicing. CONCLUSION: This study expands the spectrum of genetic variants for arRP in Pakistani families.


Author(s):  
Maha Alotaibi ◽  
Deema Aldhubaiban ◽  
Ahmed Alasmari ◽  
Leena Alotaibi

AbstractGeroderma osteodysplasticum (GO; MIM 231070) is characterized by a typical progeroid facial appearance, wrinkled, lax skin, joint laxity, skeletal abnormalities with variable degree of osteopenia, frequent fractures, scoliosis, bowed long bones, vertebral collapse, and hyperextensible fingers. The disorder results from mutations in the GORAB—golgin, RAB6 interacting. This gene encodes a member of the golgin family, a group of coiled-coil proteins on golgin that maps to chromosome 1q24. The encoded protein has a function in the secretory pathway, was identified by terminal kinase-like protein, and thus, it may function in mitosis. Mutations in this gene have been associated with GO. Herein, we describe the clinical presentation of one young male patient from related Saudi parents. Mutations, a homozygous frameshift mutation (c.306dup p.(pro 103 Thrfs*20)). Interestingly, phenotypic variability was observed in this patient with GO features that were more atypical than the cases reported in the literature as he looks tall stature where most of the cases reported were short and arachnodactyly fingers which mimic other syndromes.


2021 ◽  
pp. jmedgenet-2021-108082
Author(s):  
Peter Igaz ◽  
Geza Toth ◽  
Peter Nagy ◽  
Katalin Dezső ◽  
Peter Istvan Turai ◽  
...  

Gorlin-Goltz syndrome (GGS) or nevoid basal cell carcinoma syndrome is a rare tumour-overgrowth syndrome associated with multiple developmental anomalies and a wide variety of tumours. Here, we describe a case of a man aged 23 years with GGS with bilateral giant tumours adjacent to both adrenals that raised the suspicion of malignancy on imaging. Histological analysis of both surgically resected tumours revealed perivascular epitheloid cell tumours (PEComas) that were independent of the adrenals. Exome sequencing of the patient’s blood sample revealed a novel germline heterozygous frameshift mutation in the PTCH1 gene. As a second hit, a somatic five nucleotide long deletion in the PTCH1 gene was demonstrated in the tumour DNA of both PEComas. To the best of our knowledge, this is the first report on PEComa in GGS, and this finding also raises the potential relevance of PTCH1 mutations and altered sonic hedgehog signalling in PEComa pathogenesis. The presence of the same somatic mutation in the bilateral tumours might indicate the possibility of a postzygotic somatic mutation that along with the germline mutation of the same gene could represent an intriguing genetic phenomenon (type 2 segmental mosaicism).


2021 ◽  
Vol 12 ◽  
Author(s):  
Kyoka Iino ◽  
Kazuya Toriumi ◽  
Riko Agarie ◽  
Mitsuhiro Miyashita ◽  
Kazuhiro Suzuki ◽  
...  

Schizophrenia is a heterogeneous psychiatric disorder characterized by positive symptoms such as hallucinations and delusions, negative symptoms such as anhedonia and flat affect, and cognitive impairment. Recently, glucuronate (GlucA) levels were reported to be significantly higher in serum of patients with schizophrenia than those in healthy controls. The accumulation of GlucA is known to be related to treatment-resistant schizophrenia, since GlucA is known to promote drug excretion by forming conjugates with drugs. However, the cause of GlucA accumulation remains unclear. Aldo-keto reductase family one member A1 (AKR1A1) is an oxidoreductase that catalyzes the reduction of GlucA. Genetic loss of AKR1A1 function is known to result in the accumulation of GlucA in rodents. Here, we aimed to explore genetic defects in AKR1A1 in patients with schizophrenia, which may result in the accumulation of GlucA. We identified 28 variants of AKR1A1 in patients with schizophrenia and control subjects. In particular, we identified a silent c.753G > A (rs745484618, p. Arg251Arg) variant located at the first position of exon 8 to be associated with schizophrenia. Using a minigene assay, we found that the c.753G > A variant induced exon 8 skipping in AKR1A1, resulting in a frameshift mutation, which in turn led to truncation of the AKR1A1 protein. Using the recombinant protein, we demonstrated that the truncated AKR1A1 completely lost its activity. Furthermore, we showed that AKR1A1 mRNA expression in the whole blood cells of individuals with the c.753G > A variant tended to be lower than that in those without the variants, leading to lower AKR activity. Our findings suggest that AKR1A1 carrying the c.753G > A variant induces exon skipping, leading to a loss of gene expression and enzymatic activity. Thus, GlucA patients with schizophrenia with the c.753G > A variant may show higher GlucA levels, leading to drug-resistant schizophrenia, since drug excretion by GlucA is enhanced.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tianyi Xin ◽  
Qian Li ◽  
Rushui Bai ◽  
Ting Zhang ◽  
Yanheng Zhou ◽  
...  

Abstract Background SATB2-associated syndrome (SAS) is a multisystem disorder caused by mutation of human SATB2 gene. Tooth agenesis is one of the most common phenotypes observed in SAS. Our study aimed at identifying novel variant of SATB2 in a patient with SAS, and to investigate the cellular and molecular mechanism of tooth agenesis caused by SATB2 mutation. Methods We applied whole exome sequencing (WES) to identify the novel mutation of SATB2 in a Chinese patient with SAS. Construction and overexpression of wild-type and the mutant vector was performed, followed by functional analysis including flow cytometry assay, fluorescent immunocytochemistry, western blot, quantitative real-time PCR and Alizarin Red S staining to investigate its impact on hDPSCs and the underlying mechanisms. Results As a result, we identified a novel frameshift mutation of SATB2 (c. 376_378delinsTT) in a patient with SAS exhibiting tooth agenesis. Human DPSCs transfected with mutant SATB2 showed decreased cell proliferation and odontogenic differentiation capacity compared with hDPSCs transfected with wild-type SATB2 plasmid. Mechanistically, mutant SATB2 failed to translocate into nucleus and distributed in the cytoplasm, failing to activate Wnt/β-catenin signaling pathway, whereas the wild-type SATB2 translocated into the nucleus and upregulated the expression of active β-catenin. When we used Wnt inhibitor XAV939 to treat hDPSCs transfected with wild-type SATB2 plasmid, the increased odontogenic differentiation capacity was attenuated. Furthermore, we found that SATB2 mutation resulted in the upregulation of DKK1 and histone demethylase JHDM1D to inhibit Wnt/β-catenin signaling pathway. Conclusion We identified a novel frameshift mutation of SATB2 (c.376_378delinsTT, p.Leu126SerfsX6) in a Chinese patient with SATB2-associated syndrome (SAS) exhibiting tooth agenesis. Mechanistically, SATB2 regulated osteo/odontogenesis of human dental pulp stem cells through Wnt/β-catenin signaling pathway by regulating DKK1 and histone demethylase JHDM1D.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaoxia Wu ◽  
Le Huang ◽  
Caiqun Luo ◽  
Yang Liu ◽  
Jianmin Niu

Background: Polyhydramnios occurs frequently during pregnancy. Mutations in the MAGED2 gene can cause X-linked acute early-onset polyhydramnios with a severe but transient form of antenatal Bartter's syndrome.Case Presentation: Here, we report a new novel frameshift mutation c.733_734delCT (p. Leu245GlufsTer4) in the MAGED2 gene (NM_177433.1) that caused prenatal polyhydramnios, but did not cause polyuria after birth. Follow-up was conducted for 2 months, and the baby's growth and development were normal, without polyuria and renal impairment. In addition, we identified all individuals with MAGED2 mutations reported in the literature before March 2021.Conclusion: We report a new case with a novel variant of the MAGED2 gene that caused severe hydramnios but with a good result and summary clinical characteristics in a newborn with antenatal Bartter's syndrome caused by an MAGED2 mutation. Good prenatal diagnosis and genetic consultation can improve pregnancy monitoring and newborn management.


Sign in / Sign up

Export Citation Format

Share Document