scholarly journals Design of a MPPT controller for permanent magnet synchronous generator driven wind turbine

Author(s):  
Việt Anh Trương ◽  
Quang Minh Huỳnh ◽  
Hoài Thương Võ

Wind and other renewable energies are more and more developed all over the world, especially in countries with high wind potential such as Vietnam, to replace fossil energy, which would be exhausted in the near future. One important characteristic of wind turbines is that at each different wind speed, there exists a working point, represented by the rotation speed and the mechanical power at the crankshaft of the wind turbine, at which the maximum mechanical power is obtained, called maximum power point (MPP). Therefore, when the wind speed changes, this working point must be changed to be able to extract the maximum power from the wind to improve the total efficiency of the wind turbine system. This, in a wind energy conversion system (WECS), is assigned to the maximum power point tracking (MPPT) controller. In this paper, a MPPT controller is proposed, based on an improved Perturb and Observe (P&O) algorithm, for wind turbines using permanent magnet synchronous generator (PMSG), to maximize energy without measuring the wind speed and power characteristics of the wind turbine. An experimental model is also designed and tested in laboratory conditions, in which two coefficients K1 and K2 are used in turn when the working point is far or close to the maximum power point. The experimental results show that the proposed MPPT controller allows the extraction of maximum power from wind turbines under variable wind speed without determining the wind speed and characteristics of the wind turbine system.

2014 ◽  
Vol 25 (2) ◽  
pp. 48-60
Author(s):  
R. Jeevajothi ◽  
D. Devaraj

This paper investigates the enhancement in voltage stability achieved while connecting a variable speed wind turbine (VSWT) driven electrically excited synchronous generator (EESG) into power systems. The wind energy conversion system (WECS) uses an AC-DC-AC converter system with an uncontrolled rectifier, maximum power point tracking (MPPT) controlled dc-dc boost converter and adaptive hysteresis controlled voltage source converter (VSC). The MPPT controller senses the rectified voltage (VDC) and traces the maximum power point to effectively maximize the output power. With MPPT and adaptive hysteresis band current control in VSC, the DC link voltage is maintained constant under variable wind speeds and transient grid currents.The effectiveness of the proposed WECS in enhancing voltage stability is analysed on a standard IEEE 5 bus system, which includes examining the voltage magnitude, voltage collapse and reactive power injected by the systems. Simulation results show that the proposed WECS has the potential to improve the long-term voltage stability of the grid by injecting reactive power. The performance of this scheme is compared with a fixed speed squirrel cage induction generator (SCIG), a variable speed doubly-fed induction generator (DFIG) and a variable speed permanent magnet synchronous generator (PMSG).


Author(s):  
H. Becheri ◽  
I. K. Bousarhanne ◽  
A. Harrouz ◽  
H. Glaoui ◽  
T. Belbekri

Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, the cost of this energy is still too high to compete with traditional fossil sources. The yield of a wind turbine depends on three parameters: the power of the wind, the turbine power curve and the ability of the generator to respond to fluctuations in the wind. This article presented the MPPT of a wind turbine system equipped with an asynchronous generator has dual power under MatlabSimulink program, in the first time we simulated all the conversion chain with complete model of DFIG and vector control in second stepthen applied the extracted maximum power MPPT strategists, this command is effective and has several advantages it offered to kept the maximum power delivered to network despite all the parameter is change.


2017 ◽  
Vol 20 (K3) ◽  
pp. 100-105
Author(s):  
Minh Quang Huynh ◽  
Liem Van Nguyen

Wind power is more and more developed as a renewable energy source. It is very essential to extract the maximum available power from the wind by operating the wind turbine at its optimal operating condition, called maximum power point tracking (MPPT). Perturb & Observe (P&O) is the simplest and mostly used algorithm for this purpose. However, this algorithm has its own disadvantages such as oscillation at maximum power point and wrong directionality under fast variation wind speed. Lots of publications are presented to solve these problems. In this paper, a conventional P&O algorithm, a modified MPPT algorithm and a fuzzy MPPT algorithm for variable speed wind turbine using permanent magnet synchronous generator (PMSG) are tested and compared in the terms of complexity, speed responses and the ability to acquire the maximal energy output.


2018 ◽  
Vol 25 (2) ◽  
pp. 397-407
Author(s):  
Yaping Xia ◽  
Minghui Yin ◽  
Ruiyu Li ◽  
De Liu ◽  
Yun Zou

A linearization model is obtained for a three-bladed horizontal-axis wind turbine (HAWT) consisting of blades and a drive-train. Sensitivity analysis of the degree of controllability (DOC) and maximum power point tracking (MPPT) efficiency with respect to the structural parameters of wind turbines is discussed by numerical simulations. It is observed from the simulation results that higher MPPT efficiency can be achieved with the increase of DOC. Based on the observation, this paper proposes a new integrated design method based on DOC to design and optimize the structural parameters of a HAWT. The designed turbine is tested by the commercial simulation software of wind turbines named Bladed. It is observed from simulations that when using the identical MPPT control strategy, the wind turbine whose structural parameters are optimized for a larger value of DOC can achieve higher MPPT performance.


2011 ◽  
Vol 110-116 ◽  
pp. 5179-5183 ◽  
Author(s):  
Tow Leong Tiang ◽  
Dahaman Ishak

This paper presents a novel sensorless maximum power point tracking (MPPT) control strategy for capturing the maximum energy from the fluctuating wind speed that being used in the stand-alone small scale variable speed wind turbine generator system (VSWTGS). The generated electricity from the wind turbine systems is used to charge battery energy storage. The whole system including the wind turbine, permanent magnet synchronous generator (PMSG), power converter, filter and lead acid battery has been simulated in Matlab/SimPowerSystem simulation software. The MPPT controller is developed to function as a wind speed estimator to generate an appropriate duty cycle for controlling power MOSFET switch in of the boost converter in order to capture maximum power in variable wind speed. From the simulation results, the power converters and filters are showing good performance in charging the lead acid battery. Besides, the novel MPPT controller is capable of extracting the maximum power from the fluctuating wind speed and exhibits good performance in both steady state and transient condition.


Sign in / Sign up

Export Citation Format

Share Document