Stability for neutral integro-dynamic equations with multiple functional delays on time scales

2021 ◽  
Vol 14 (3) ◽  
Author(s):  
Kamel Ali Khelil ◽  
Abdelouaheb Ardjouni ◽  
Ahcene Djoudi
2020 ◽  
Vol 18 (1) ◽  
pp. 353-377 ◽  
Author(s):  
Zhien Li ◽  
Chao Wang

Abstract In this study, we obtain the scalar and matrix exponential functions through a series of quaternion-valued functions on time scales. A sufficient and necessary condition is established to guarantee that the induced matrix is real-valued for the complex adjoint matrix of a quaternion matrix. Moreover, the Cauchy matrices and Liouville formulas for the quaternion homogeneous and nonhomogeneous impulsive dynamic equations are given and proved. Based on it, the existence, uniqueness, and expressions of their solutions are also obtained, including their scalar and matrix forms. Since the quaternion algebra is noncommutative, many concepts and properties of the non-quaternion impulsive dynamic equations are ineffective, we provide several examples and counterexamples on various time scales to illustrate the effectiveness of our results.


2014 ◽  
Vol 2014 ◽  
pp. 1-28
Author(s):  
Jiang Zhu ◽  
Dongmei Liu

Some delta-nabla type maximum principles for second-order dynamic equations on time scales are proved. By using these maximum principles, the uniqueness theorems of the solutions, the approximation theorems of the solutions, the existence theorem, and construction techniques of the lower and upper solutions for second-order linear and nonlinear initial value problems and boundary value problems on time scales are proved, the oscillation of second-order mixed delat-nabla differential equations is discussed and, some maximum principles for second order mixed forward and backward difference dynamic system are proved.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Li Gao ◽  
Quanxin Zhang ◽  
Shouhua Liu

A class of third-order nonlinear delay dynamic equations on time scales is studied. By using the generalized Riccati transformation and the inequality technique, four new sufficient conditions which ensure that every solution is oscillatory or converges to zero are established. The results obtained essentially improve earlier ones. Some examples are considered to illustrate the main results.


Sign in / Sign up

Export Citation Format

Share Document