pulsed thermography
Recently Published Documents


TOTAL DOCUMENTS

293
(FIVE YEARS 88)

H-INDEX

28
(FIVE YEARS 6)

2021 ◽  
Vol 11 (24) ◽  
pp. 12168
Author(s):  
Yoonjae Chung ◽  
Seungju Lee ◽  
Wontae Kim

Non-destructive testing (NDT) is a broad group of testing and analysis techniques used in science and industry to evaluate the properties of a material, structure, or system for characteristic defects and discontinuities without causing damage. Recently, infrared thermography is one of the most promising technologies as it can inspect a large area quickly using a non-contact and non-destructive method. Moreover, thermography testing has proved to be a valuable approach for non-destructive testing and evaluation of structural stability of materials. Pulsed thermography is one of the active thermography technologies that utilizes external energy heating. However, due to the non-uniform heating, lateral heat diffusion, environmental noise, and limited parameters of the thermal imaging system, there are some difficulties in detecting and characterizing defects. In order to improve this limitation, various signal processing techniques have been developed through many previous studies. This review presents the latest advances and exhaustive summary of representative signal processing techniques used in pulsed thermography according to physical principles and thermal excitation sources. First, the basic concept of infrared thermography non-destructive testing is introduced. Next, the principle of conventional pulsed thermography and signal processing technologies for non-destructive testing are reviewed. Then, we review advances and recent advances in each signal processing. Finally, the latest research trends are reviewed.


2021 ◽  
Vol 8 (1) ◽  
pp. 14
Author(s):  
Wei Hng Lim ◽  
Stefano Sfarra ◽  
Yuan Yao

Defect detection in composite materials using active thermography is a well-studied field, and many thermographic data analysis methods have been proposed to facilitate defect visibility enhancement. In this work, we introduce a deep learning method that is constrained by known heat transfer phenomena described by a series of governing equations, also known in the literature as the physics-informed neural network (PINN). The accurate reconstruction of background information based on thermal images facilitates the identification of subsurface defects and reduction in noises caused by an uneven background and heating. The authors illustrate the method’s feasibility through experimental results obtained after pulsed thermography (PT) on a carbon fiber-reinforced polymer (CFRP) specimen.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7185
Author(s):  
Samira Ebrahimi ◽  
Julien R. Fleuret ◽  
Matthieu Klein ◽  
Louis-Daniel Théroux ◽  
Clemente Ibarra-Castanedo ◽  
...  

Pulsed thermography is a commonly used non-destructive testing method and is increasingly studied for the assessment of advanced materials such as carbon fibre-reinforced polymer (CFRP). Different processing approaches are proposed to detect and characterize anomalies that may be generated in structures during the manufacturing cycle or service period. In this study, matrix decomposition using Robust PCA via Inexact-ALM is investigated as a pre- and post-processing approach in combination with state-of-the-art approaches (i.e., PCT, PPT and PLST) on pulsed thermography thermal data. An academic sample with several artificial defects of different types, i.e., flat-bottom-holes (FBH), pull-outs (PO) and Teflon inserts (TEF), was employed to assess and compare defect detection and segmentation capabilities of different processing approaches. For this purpose, the contrast-to-noise ratio (CNR) and similarity coefficient were used as quantitative metrics. The results show a clear improvement in CNR when Robust PCA is applied as a pre-processing technique, CNR values for FBH, PO and TEF improve up to 164%, 237% and 80%, respectively, when compared to principal component thermography (PCT), whilst the CNR improvement with respect to pulsed phase thermography (PPT) was 77%, 101% and 289%, respectively. In the case of partial least squares thermography, Robust PCA results improved not only only when used as a pre-processing technique but also when used as a post-processing technique; however, this improvement is higher for FBHs and POs after pre-processing. Pre-processing increases CNR scores for FBHs and POs with a ratio from 0.43% to 115.88% and from 13.48% to 216.63%, respectively. Similarly, post-processing enhances the FBHs and POs results with a ratio between 9.62% and 296.9% and 16.98% to 92.6%, respectively. A low-rank matrix computed from Robust PCA as a pre-processing technique on raw data before using PCT and PPT can enhance the results of 67% of the defects. Using low-rank matrix decomposition from Robust PCA as a pre- and post-processing technique outperforms PLST results of 69% and 67% of the defects. These results clearly indicate that pre-processing pulsed thermography data by Robust PCA can elevate the defect detectability of advanced processing techniques, such as PCT, PPT and PLST, while post-processing using the same methods, in some cases, can deteriorate the results.


2021 ◽  
Author(s):  
Sen Wang ◽  
Ning Tao ◽  
Jing He ◽  
Chao Ge ◽  
Shixing Wang ◽  
...  

Measurement ◽  
2021 ◽  
pp. 110111
Author(s):  
G. Caruso ◽  
F. Mercuri ◽  
U. Zammit ◽  
S. Paoloni ◽  
S. Ceccarelli ◽  
...  

Author(s):  
Samira Ebrahimi ◽  
Julien R Fleuret ◽  
Matthieu Klein ◽  
Louis-Daniel Théroux ◽  
Clemente Ibarra-Castanedo ◽  
...  

Pulsed thermography is a commonly used non-destructive testing method, and is increasingly studied for advanced materials such as carbon fiber-reinforced polymer (CFRP) evaluation. Different processing approaches are proposed to detect and characterize anomalies that may be generated in structures during the manufacturing cycle or service period. In this study, we used a type of matrix decomposition using Robust-PCA via Inexact-ALM in our experiment. We investigate this method as a pre-and post-processing method on thermal data acquired by pulsed thermography. We employed state-of-the-art methods, i.e., PCT, PPT, and PLST, as the main process. The results indicate that pre-processing on thermal data can elevate the defect detectability while post-processing, in some cases, can deteriorate the results.


2021 ◽  
Vol 267 ◽  
pp. 113846
Author(s):  
Yanjie Wei ◽  
Shuiqiang Zhang ◽  
Yongjian Luo ◽  
Li Ding ◽  
Dongsheng Zhang

Sign in / Sign up

Export Citation Format

Share Document