scholarly journals Fuzzy C-Means Algorithm Automatically Determining Optimal Number of Clusters

2019 ◽  
Vol 60 (2) ◽  
pp. 767-780
Author(s):  
Ruikang Xing ◽  
Chenghai Li
2018 ◽  
Vol 13 (1) ◽  
pp. 210-218 ◽  
Author(s):  
Francisco Carlos Lira Pessoa ◽  
Claudio José Cavalcante Blanco ◽  
Evanice Pinheiro Gomes

Abstract Lack of streamflow data is one of the main limitations in hydrologic studies. One method of solving this problem is by streamflow regionalization. The identification of hydrologically homogeneous regions is the main and most important stage of regionalization. In this study homogeneous flow regions are identified by fuzzy c-means (FCM) cluster analysis based on morpho-climatic characteristics from streamflow at 208 stream gauges in the Amazon region. The optimal number of clusters in the dataset was identified by applying the PBM validation index, maximized for ten clusters, with a fuzzing parameter of 1.6. The application dataset is best divided into 10 groups. These were well defined and demonstrated the Amazon's hydrologic similarity.


2013 ◽  
Vol 392 ◽  
pp. 803-807 ◽  
Author(s):  
Xue Bo Feng ◽  
Fang Yao ◽  
Zhi Gang Li ◽  
Xiao Jing Yang

According to the number of cluster centers, initial cluster centers, fuzzy factor, iterations and threshold, Fuzzy C-means clustering algorithm (FCM) clusters the data set. FCM will encounter the initialization problem of clustering prototype. Firstly, the article combines the maximum and minimum distance algorithm and K-means algorithm to determine the number of clusters and the initial cluster centers. Secondly, the article determines the optimal number of clusters with Silhouette indicators. Finally, the article improves the convergence rate of FCM by revising membership constantly. The improved FCM has good clustering effect, enhances the optimized capability, and improves the efficiency and effectiveness of the clustering. It has better tightness in the class, scatter among classes and cluster stability and faster convergence rate than the traditional FCM clustering method.


2018 ◽  
Vol 14 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Lin Zhang ◽  
Yanling He ◽  
Huaizhi Wang ◽  
Hui Liu ◽  
Yufei Huang ◽  
...  

Background: RNA methylome has been discovered as an important layer of gene regulation and can be profiled directly with count-based measurements from high-throughput sequencing data. Although the detailed regulatory circuit of the epitranscriptome remains uncharted, clustering effect in methylation status among different RNA methylation sites can be identified from transcriptome-wide RNA methylation profiles and may reflect the epitranscriptomic regulation. Count-based RNA methylation sequencing data has unique features, such as low reads coverage, which calls for novel clustering approaches. <P><P> Objective: Besides the low reads coverage, it is also necessary to keep the integer property to approach clustering analysis of count-based RNA methylation sequencing data. <P><P> Method: We proposed a nonparametric generative model together with its Gibbs sampling solution for clustering analysis. The proposed approach implements a beta-binomial mixture model to capture the clustering effect in methylation level with the original count-based measurements rather than an estimated continuous methylation level. Besides, it adopts a nonparametric Dirichlet process to automatically determine an optimal number of clusters so as to avoid the common model selection problem in clustering analysis. <P><P> Results: When tested on the simulated system, the method demonstrated improved clustering performance over hierarchical clustering, K-means, MClust, NMF and EMclust. It also revealed on real dataset two novel RNA N6-methyladenosine (m6A) co-methylation patterns that may be induced directly by METTL14 and WTAP, which are two known regulatory components of the RNA m6A methyltransferase complex. <P><P> Conclusion: Our proposed DPBBM method not only properly handles the count-based measurements of RNA methylation data from sites of very low reads coverage, but also learns an optimal number of clusters adaptively from the data analyzed. <P><P> Availability: The source code and documents of DPBBM R package are freely available through the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/DPBBM/.


Sign in / Sign up

Export Citation Format

Share Document