scholarly journals Fast Search Algorithm for Determining the Optimal Number of Clusters using Cluster Validity Index

2009 ◽  
Vol 9 (9) ◽  
pp. 80-89 ◽  
Author(s):  
Sang-Wook Lee
Author(s):  
M. Arif Wani ◽  
Romana Riyaz

Purpose – The most commonly used approaches for cluster validation are based on indices but the majority of the existing cluster validity indices do not work well on data sets of different complexities. The purpose of this paper is to propose a new cluster validity index (ARSD index) that works well on all types of data sets. Design/methodology/approach – The authors introduce a new compactness measure that depicts the typical behaviour of a cluster where more points are located around the centre and lesser points towards the outer edge of the cluster. A novel penalty function is proposed for determining the distinctness measure of clusters. Random linear search-algorithm is employed to evaluate and compare the performance of the five commonly known validity indices and the proposed validity index. The values of the six indices are computed for all nc ranging from (nc min, nc max) to obtain the optimal number of clusters present in a data set. The data sets used in the experiments include shaped, Gaussian-like and real data sets. Findings – Through extensive experimental study, it is observed that the proposed validity index is found to be more consistent and reliable in indicating the correct number of clusters compared to other validity indices. This is experimentally demonstrated on 11 data sets where the proposed index has achieved better results. Originality/value – The originality of the research paper includes proposing a novel cluster validity index which is used to determine the optimal number of clusters present in data sets of different complexities.


2021 ◽  
Vol 5 (1) ◽  
pp. 7-12
Author(s):  
Salnan Ratih Asrriningtias

One of the strategies in order to compete in Batik  MSMEs  is to look at the characteristics of the customer. To make it easier to see the characteristics of  customer buying behavior, it is necessary to classify customers based on similarity of characteristics using fuzzy clustering. One of the parameters that must be determined at the beginning of the fuzzy clustering method is the number of clusters. Increasing the number of clusters does not guarantee the best performance, but the right number of clusters greatly affects the performance of fuzzy clustering. So to get optimal number cluster, we can measured the result of clustering in each number cluster using the cluster validity index. From several types of cluster validity index,  NPC give the best value. Optimal number cluster that obtained by the validity index is 2 and this number cluster give classify result with small variance value


2014 ◽  
Vol 31 (8) ◽  
pp. 1778-1789
Author(s):  
Hongkang Lin

Purpose – The clustering/classification method proposed in this study, designated as the PFV-index method, provides the means to solve the following problems for a data set characterized by imprecision and uncertainty: first, discretizing the continuous values of all the individual attributes within a data set; second, evaluating the optimality of the discretization results; third, determining the optimal number of clusters per attribute; and fourth, improving the classification accuracy (CA) of data sets characterized by uncertainty. The paper aims to discuss these issues. Design/methodology/approach – The proposed method for the solution of the clustering/classifying problem, designated as PFV-index method, combines a particle swarm optimization algorithm, fuzzy C-means method, variable precision rough sets theory, and a new cluster validity index function. Findings – This method could cluster the values of the individual attributes within the data set and achieves both the optimal number of clusters and the optimal CA. Originality/value – The validity of the proposed approach is investigated by comparing the classification results obtained for UCI data sets with those obtained by supervised classification BPNN, decision-tree methods.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yongli Liu ◽  
Xiaoyang Zhang ◽  
Jingli Chen ◽  
Hao Chao

Because traditional fuzzy clustering validity indices need to specify the number of clusters and are sensitive to noise data, we propose a validity index for fuzzy clustering, named CSBM (compactness separateness bipartite modularity), based on bipartite modularity. CSBM enhances the robustness by combining intraclass compactness and interclass separateness and can automatically determine the optimal number of clusters. In order to estimate the performance of CSBM, we carried out experiments on six real datasets and compared CSBM with other six prominent indices. Experimental results show that the CSBM index performs the best in terms of robustness while accurately detecting the number of clusters.


2017 ◽  
Vol 65 (4) ◽  
pp. 359-365 ◽  
Author(s):  
Javier Senent-Aparicio ◽  
Jesús Soto ◽  
Julio Pérez-Sánchez ◽  
Jorge Garrido

AbstractOne of the most important problems faced in hydrology is the estimation of flood magnitudes and frequencies in ungauged basins. Hydrological regionalisation is used to transfer information from gauged watersheds to ungauged watersheds. However, to obtain reliable results, the watersheds involved must have a similar hydrological behaviour. In this study, two different clustering approaches are used and compared to identify the hydrologically homogeneous regions. Fuzzy C-Means algorithm (FCM), which is widely used for regionalisation studies, needs the calculation of cluster validity indices in order to determine the optimal number of clusters. Fuzzy Minimals algorithm (FM), which presents an advantage compared with others fuzzy clustering algorithms, does not need to know a priori the number of clusters, so cluster validity indices are not used. Regional homogeneity test based on L-moments approach is used to check homogeneity of regions identified by both cluster analysis approaches. The validation of the FM algorithm in deriving homogeneous regions for flood frequency analysis is illustrated through its application to data from the watersheds in Alto Genil (South Spain). According to the results, FM algorithm is recommended for identifying the hydrologically homogeneous regions for regional frequency analysis.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Min Ren ◽  
Peiyu Liu ◽  
Zhihao Wang ◽  
Jing Yi

For the shortcoming of fuzzyc-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rulenand obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result.


Author(s):  
HORNG-LIN SHIEH ◽  
CHENG-CHIEN KUO

This paper proposes a new validity index for the subtractive clustering (SC) algorithm. The subtractive clustering algorithm proposed by Chiu is an effective and simple method for identifying the cluster centers of sampling data based on the concept of a density function. The SC algorithm continually produces the cluster centers until the final potential compared with the original is less than a predefined threshold. The procedure is terminated when there are only a few data points around the most recent cluster. The choice of the threshold is an important factor affecting the clustering results: if it is too large, then too few data points will be accepted as cluster centers; if it is too small, then too many cluster centers will be generated. In this paper, a modified SC algorithm for data clustering based on a cluster validity index is proposed to obtain the optimal number of clusters. Six examples show that the proposed index achieves better performance results than other cluster validities do.


Author(s):  
Ali Kaveh ◽  
Mohammad Reza Seddighian ◽  
Pouya Hassani

In this paper, an automatic data clustering approach is presented using some concepts of the graph theory. Some Cluster Validity Index (CVI) is mentioned, and DB Index is defined as the objective function of meta-heuristic algorithms. Six Finite Element meshes are decomposed containing two- and three- dimensional types that comprise simple and complex meshes. Six meta-heuristic algorithms are utilized to determine the optimal number of clusters and minimize the decomposition problem. Finally, corresponding statistical results are compared.


Sign in / Sign up

Export Citation Format

Share Document