scholarly journals Initiation Mechanism of Transverse Cracks in Wind Turbine Blade Trailing Edge

2022 ◽  
Vol 119 (1) ◽  
pp. 407-418
Author(s):  
Jinghua Wang ◽  
Leian Zhang ◽  
Xuemei Huang ◽  
Jinfeng Zhang ◽  
Chengwei Yuan
Author(s):  
Jinghua Wang ◽  
Leian Zhang ◽  
Xuemei Huang ◽  
Jinfeng Zhang ◽  
Chengwei Yuan

2020 ◽  
pp. 0309524X2097840
Author(s):  
Jacob P Waldbjørn ◽  
Andrei Buliga ◽  
Christian Berggreen ◽  
Find Moelholt Jensen

Transverse cracks in the double curved trailing edge panels within the transition zone are among one of the increasingly encountered in-field damages found on wind turbine blades today. Believed to be root cause of these transverse cracks, are the out-of-plane deformation of the double curved trailing edge pressure side panels. These deformations are evaluated on the inner 15 m section of a 34 m wind turbine blade – referred to here as the root section. Through a parametrical study the free end of the root section is loaded in the quasi-static regime comprising edgewise loading (Fy) and torsional moment (Mz) around the longitudinal axis of the blade. The root section is through a multi-scale numerical analysis found to exhibit representative structural behavior in terms of out-of-plane deformations within the area of interest. A combination between Fy and Mz are found to generate the highest peak-to-peak out-of-plane deformation of 15.9 mm.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Alvaro Gonzalez ◽  
Xabier Munduate

This work undertakes an aerodynamic analysis over the parked and the rotating NREL Phase VI wind turbine blade. The experimental sequences from NASA Ames wind tunnel selected for this study respond to the parked blade and the rotating configuration, both for the upwind, two-bladed wind turbine operating at nonyawed conditions. The objective is to bring some light into the nature of the flow field and especially the type of stall behavior observed when 2D aerofoil steady measurements are compared to the parked blade and the latter to the rotating one. From averaged pressure coefficients together with their standard deviation values, trailing and leading edge separated flow regions have been found, with the limitations of the repeatability of the flow encountered on the blade. Results for the parked blade show the progressive delay from tip to root of the trailing edge separation process, with respect to the 2D profile, and also reveal a local region of leading edge separated flow or bubble at the inner, 30% and 47% of the blade. For the rotating blade, results at inboard 30% and 47% stations show a dramatic suppression of the trailing edge separation, and the development of a leading edge separation structure connected with the extra lift.


2021 ◽  
Vol 263 (2) ◽  
pp. 4079-4087
Author(s):  
Murat Inalpolat ◽  
Caleb Traylor

Noise generated by turbulent boundary layer over the trailing edge of a wind turbine blade under various flow conditions is predicted and analyzed for structural health monitoring purposes. Wind turbine blade monitoring presents a challenge to wind farm operators, and an in-blade structural health monitoring system would significantly reduce O&M costs. Previous studies into structural health monitoring of blades have demonstrated the feasibility of designing a passive detection system based on monitoring the flow-generated acoustic spectra. A beneficial next step is identifying the robustness of such a system to wind turbine blades under different flow conditions. To examine this, a range of free stream air velocities from 5 m/s to 20 m/s and a range of rotor speeds from 5 rpm to 20 rpm are used in a reduced-order model of the flow-generated sound in the trailing edge turbulent boundary layer. The equivalent lumped acoustics sources are predicted based on the turbulent flow simulations, and acoustic spectra are calculated using acoustic ray tracing. Each case is evaluated based on the changes detected when damage is present. These results can be used to identify wind farms that would most benefit from this monitoring system to increase efficiency in deployment of turbines.


2020 ◽  
pp. 1088-1096
Author(s):  
Viktus Kolo Koten ◽  
Syukri Himran ◽  
Nasaruddin Salam ◽  
Luther Sule

2013 ◽  
Vol 21 (4) ◽  
pp. 1105-1116 ◽  
Author(s):  
Damien Castaignet ◽  
Ian Couchman ◽  
Niels Kjolstad Poulsen ◽  
Thomas Buhl ◽  
Jens Jakob Wedel-Heinen

Sign in / Sign up

Export Citation Format

Share Document