shape changes
Recently Published Documents


TOTAL DOCUMENTS

1512
(FIVE YEARS 303)

H-INDEX

84
(FIVE YEARS 8)

2022 ◽  
Vol 21 (1) ◽  
pp. 80-101
Author(s):  
Dai-Ni Hsieh ◽  
Sylvain Arguillère ◽  
Nicolas Charon ◽  
Laurent Younes

2021 ◽  
Vol 12 (1) ◽  
pp. 315
Author(s):  
Zoya Ghorbanishiadeh ◽  
Bojun Zhou ◽  
Morteza Sheibani Karkhaneh ◽  
Rebecca Oehler ◽  
Mark G. Kuzyk

This work is a comprehensive experimental and theoretical study aimed at understanding the photothermal and molecular shape-change contributions to the photomechanical effect of polymers doped with azo dyes. Our prototypical system is the azobenzene dye Disperse Red 1 (DR1) doped into poly (methyl methacrylate) (PMMA) polymer formed into optical fibers. We start by determining the thermo-mechanical properties of the materials with a temperature-dependent stress measurement. The material parameters, so determined, are used in a photothermal heating model—with no adjustable parameters—to predict its contribution. The photothermal heating model predicts the observations, ruling out mechanisms originating in light-induced shape changes of the dopant molecules. The photomechanical tensor response along the two principle axes in the uniaxial approximation is measured and compared with another independent theory of photothermal heating and angular hole burning/reorientation. Again, the results are consistent only with a purely thermal response, showing that effects due to light-induced shape changes of the azo dyes are negligible. The measurements are repeated as a function of polymer chain length and the photomechanical efficiencies determined. We find the results to be mostly chain-length independent.


2021 ◽  
Author(s):  
Felix Neumann ◽  
Johannes T Margraf ◽  
Karsten Reuter ◽  
Albert Bruix

Despite the large relevance of bimetallic metal nanoparticles for heterogeneous catalysis, the relation between their shape and elemental composition remains elusive. Here, we investigate this relationship by implementing and applying global optimization methods enhanced with a novel optimal-exchange algorithm. In particular, we determine the lowest energy chemical orderings for PtAu nanoparticles, revealing that the most stable shape changes from highly symmetric structures for pure particles to distorted and less symmetric shapes for intermediate compositions. The presented method leverages the local atomic contributions to an empirical surrogate energy expression to identify optimal atom exchanges. This also allows us to pinpoint the origin of the stability of distorted shapes, revealing a favorable energy trade-off when over-coordinating Pt and under-coordinating Au upon distorting the particle shape.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8367
Author(s):  
Piotr M. Szczypiński ◽  
Katarzyna Sprawka

Melanoma is the most lethal form of skin cancer, and develops from mutation of pigment-producing cells. As it becomes malignant, it usually grows in size, changes proportions, and develops an irregular border. We introduce a system for early detection of such changes, which enables whole-body screening, especially useful in patients with atypical mole syndrome. The paper proposes a procedure to build a 3D model of the patient, relate the high-resolution skin images with the model, and orthorectify these images to enable detection of size and shape changes in nevi. The novelty is in the application of image encoding indices and barycentric coordinates of the mesh triangles. The proposed procedure was validated with a set of markers of a specified geometry. The markers were attached to the body of a volunteer and analyzed by the system. The results of quantitative comparison of original and corrected images confirm that the orthorectification allows for more accurate estimation of size and proportions of skin nevi.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009614
Author(s):  
Fu-Lai Wen ◽  
Chun Wai Kwan ◽  
Yu-Chiun Wang ◽  
Tatsuo Shibata

Epithelial tissues form folded structures during embryonic development and organogenesis. Whereas substantial efforts have been devoted to identifying mechanical and biochemical mechanisms that induce folding, whether and how their interplay synergistically shapes epithelial folds remains poorly understood. Here we propose a mechano–biochemical model for dorsal fold formation in the early Drosophila embryo, an epithelial folding event induced by shifts of cell polarity. Based on experimentally observed apical domain homeostasis, we couple cell mechanics to polarity and find that mechanical changes following the initial polarity shifts alter cell geometry, which in turn influences the reaction-diffusion of polarity proteins, thus forming a feedback loop between cell mechanics and polarity. This model can induce spontaneous fold formation in silico, recapitulate polarity and shape changes observed in vivo, and confer robustness to tissue shape change against small fluctuations in mechanics and polarity. These findings reveal emergent properties of a developing epithelium under control of intracellular mechano–polarity coupling.


2021 ◽  
Vol 17 (12) ◽  
Author(s):  
Kara L. Feilich ◽  
J. D. Laurence-Chasen ◽  
Courtney Orsbon ◽  
Nicholas J. Gidmark ◽  
Callum F. Ross

Three-dimensional (3D) tongue movements are central to performance of feeding functions by mammals and other tetrapods, but 3D tongue kinematics during feeding are poorly understood. Tongue kinematics were recorded during grape chewing by macaque primates using biplanar videoradiography. Complex shape changes in the tongue during chewing are dominated by a combination of flexion in the tongue's sagittal planes and roll about its long axis. As hypothesized for humans, in macaques during tongue retraction, the middle (molar region) of the tongue rolls to the chewing (working) side simultaneous with sagittal flexion, while the tongue tip flexes to the other (balancing) side. Twisting and flexion reach their maxima early in the fast close phase of chewing cycles, positioning the food bolus between the approaching teeth prior to the power stroke. Although 3D tongue kinematics undoubtedly vary with food type, the mechanical role of this movement—placing the food bolus on the post-canine teeth for breakdown—is likely to be a powerful constraint on tongue kinematics during this phase of the chewing cycle. The muscular drivers of these movements are likely to include a combination of intrinsic and extrinsic tongue muscles.


Development ◽  
2021 ◽  
Vol 148 (23) ◽  
Author(s):  
Satoshi Yamashita ◽  
Boris Guirao ◽  
François Graner

ABSTRACT Within developing tissues, cell proliferation, cell motility and other cell behaviors vary spatially, and this variability gives a complexity to the morphogenesis. Recently, novel formalisms have been developed to quantify tissue deformation and underlying cellular processes. A major challenge for the study of morphogenesis now is to objectively define tissue sub-regions exhibiting different dynamics. Here, we propose a method to automatically divide a tissue into regions where the local deformation rate is homogeneous. This was achieved by several steps including image segmentation, clustering and region boundary smoothing. We illustrate the use of the pipeline using a large dataset obtained during the metamorphosis of the Drosophila pupal notum. We also adapt it to determine regions in which the time evolution of the local deformation rate is homogeneous. Finally, we generalize its use to find homogeneous regions for cellular processes such as cell division, cell rearrangement, or cell size and shape changes. We also illustrate it on wing blade morphogenesis. This pipeline will contribute substantially to the analysis of complex tissue shaping, and the biochemical and biomechanical regulations driving tissue morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document