scholarly journals rTableICC: An R Package for Random Generation of 22K and RC Contingency Tables

The R Journal ◽  
2016 ◽  
Vol 8 (1) ◽  
pp. 48 ◽  
Author(s):  
Haydar Demirhan
Methodology ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 149-167
Author(s):  
Mark Stemmler ◽  
Jörg-Henrik Heine ◽  
Susanne Wallner

Configural Frequency Analysis (CFA) is a useful statistical method for the analysis of multiway contingency tables and an appropriate tool for person-oriented or person-centered methods. In complex contingency tables, patterns or configurations are analyzed by comparing observed cell frequencies with expected frequencies. Significant differences between observed and expected frequencies lead to the emergence of Types and Antitypes. Types are patterns or configurations which are significantly more often observed than the expected frequencies; Antitypes represent configurations which are observed less frequently than expected. The R-package confreq is an easy-to-use software for conducting CFAs; another useful shareware to run CFAs was developed by Alexander von Eye. Here, CFA is presented based on the log-linear modeling approach. CFA may be used together with interval level variables which can be added as covariates into the design matrix. In this article, a real data example and the use of confreq are presented. In sum, the use of a covariate may bring the estimated cell frequencies closer to the observed cell frequencies. In those cases, the number of Types or Antitypes may decrease. However, in rare cases, the Type-Antitype pattern can change with new emerging Types or Antitypes.


2021 ◽  
Author(s):  
JoseM Pavia ◽  
Rafael Romero

The estimation of RxC ecological inference contingency tables from aggregate data defines one of the most salient and challenging problems in the field of quantitative social sciences. From the mathematical programming framework, this paper suggests a new direction for tackling this problem. For the first time in the literature, a procedure based on linear programming is proposed to attain estimates of local contingency tables. Based on this and the homogeneity hypothesis, we suggest two new ecological inference algorithms. These two new algorithms represent an important step forward in the ecological inference mathematical programming literature. In addition to generating estimates for local ecological inference contingency tables and amending the tendency to produce extreme transfer probability estimates previously observed in other mathematical programming procedures, they prove to be quite competitive and more accurate than the current linear programming baseline algorithm. The new algorithms place the linear programming approach once again in a prominent position in the ecological inference toolkit. We use a unique dataset with almost 500 elections, where the real transfer matrices are known, to assess their accuracy. Interested readers can easily use these new algorithms with the aid of the R package lphom.


2004 ◽  
Vol 326 (1-3) ◽  
pp. 117-135 ◽  
Author(s):  
Tomomi Matsui ◽  
Yasuko Matsui ◽  
Yoko Ono

2021 ◽  
Author(s):  
JoseM Pavia ◽  
Rafael Romero

The estimation of RxC ecological inference contingency tables from aggregate data defines one of the most salient and challenging problems in the field of quantitative social sciences. From the mathematical programming framework, this paper suggests a new direction for tackling this problem. For the first time in the literature, a procedure based on linear programming is proposed to attain estimates of local contingency tables. Based on this and the homogeneity hypothesis, we suggest two new ecological inference algorithms. These two new algorithms represent an important step forward in the ecological inference mathematical programming literature. In addition to generating estimates for local ecological inference contingency tables and amending the tendency to produce extreme transfer probability estimates previously observed in other mathematical programming procedures, they prove to be quite competitive and more accurate than the current linear programming baseline algorithm. The new algorithms place the linear programming approach once again in a prominent position in the ecological inference toolkit. We use a unique dataset with almost 500 elections, where the real transfer matrices are known, to assess their accuracy. Interested readers can easily use these new algorithms with the aid of the R package lphom.


1993 ◽  
Vol 38 (8) ◽  
pp. 797-798
Author(s):  
Stephen E. Fienberg
Keyword(s):  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
C Roullier ◽  
Y Guitton ◽  
S Prado ◽  
O Grovel ◽  
YF Pouchus

2019 ◽  
Author(s):  
Shinichi Nakagawa ◽  
Malgorzata Lagisz ◽  
Rose E O'Dea ◽  
Joanna Rutkowska ◽  
Yefeng Yang ◽  
...  

‘Classic’ forest plots show the effect sizes from individual studies and the aggregate effect from a meta-analysis. However, in ecology and evolution meta-analyses routinely contain over 100 effect sizes, making the classic forest plot of limited use. We surveyed 102 meta-analyses in ecology and evolution, finding that only 11% use the classic forest plot. Instead, most used a ‘forest-like plot’, showing point estimates (with 95% confidence intervals; CIs) from a series of subgroups or categories in a meta-regression. We propose a modification of the forest-like plot, which we name the ‘orchard plot’. Orchard plots, in addition to showing overall mean effects and CIs from meta-analyses/regressions, also includes 95% prediction intervals (PIs), and the individual effect sizes scaled by their precision. The PI allows the user and reader to see the range in which an effect size from a future study may be expected to fall. The PI, therefore, provides an intuitive interpretation of any heterogeneity in the data. Supplementing the PI, the inclusion of underlying effect sizes also allows the user to see any influential or outlying effect sizes. We showcase the orchard plot with example datasets from ecology and evolution, using the R package, orchard, including several functions for visualizing meta-analytic data using forest-plot derivatives. We consider the orchard plot as a variant on the classic forest plot, cultivated to the needs of meta-analysts in ecology and evolution. Hopefully, the orchard plot will prove fruitful for visualizing large collections of heterogeneous effect sizes regardless of the field of study.


Sign in / Sign up

Export Citation Format

Share Document