scholarly journals An Efficient Method for License Plate Detection and Recognition using OCR

Author(s):  
Aswathy Mani ◽  
Nisy John Panicker

This paper presents an efficient method for license plate detection and recognition that will aid in the development of an intelligent transport system. To significantly accelerate license plate localization a simple image pre-processing method is first used without reducing detection performance compared with that obtained using original image. Line density filter approach is used to extract the license plate regions, there by significantly reducing area to be analysed for license plate localization. In license plate recognition, the characters are recognized from these detected license plates by using optical character recognition and the owner details are displayed. The aim of this paper is to serve the purpose of accurately localizing vehicle license plates from complex scenes in real time that would help motor vehicle department in various ways.

2021 ◽  
Vol 14 (4) ◽  
pp. 11
Author(s):  
Kayode David Adedayo ◽  
Ayomide Oluwaseyi Agunloye

License plate detection and recognition are critical components of the development of a connected Intelligent transportation system, but are underused in developing countries because to the associated costs. Existing license plate detection and recognition systems with high accuracy require the usage of Graphical Processing Units (GPU), which may be difficult to come by in developing nations. Single stage detectors and commercial optical character recognition engines, on the other hand, are less computationally expensive and can achieve acceptable detection and recognition accuracy without the use of a GPU. In this work, a pretrained SSD model and a tesseract tessdata-fast traineddata were fine-tuned on a dataset of more than 2,000 images of vehicles with license plate. These models were combined with a unique image preprocessing algorithm for character segmentation and tested using a general-purpose personal computer on a new collection of 200 automobiles with license plate photos. On this testing set, the plate detection system achieved a detection accuracy of 99.5 % at an IOU threshold of 0.45 while the OCR engine successfully recognized all characters on 150 license plates, one character incorrectly on 24 license plates, and two or more incorrect characters on 26 license plates. The detection procedure took an average of 80 milliseconds, while the character segmentation and identification stages took an average of 95 milliseconds, resulting in an average processing time of 175 milliseconds per image, or 6 photos per second. The obtained results are suitable for real-time traffic applications.


Author(s):  
S. Madhan ◽  
M. Pradeep

This work develops an Android-based robot featuring automatic license plate recognition and automatic license plate patrolling. The automatic license plate recognition feature combines 4 self-developed novel methods, Wiener deconvolution vertical edge enhancement, AdaBoost plus vertical-edge license plate detection, vertical edge projection histogram segmentation stain removal, and customized optical character recognition. Besides, the automatic license plate patrolling feature also integrates 3 novel methods, HL2-band rough license plate detection, orientated license plate approaching, and Ad-Hoc-based remote motion control. Implementation results show the license plate detection rate and recognition rate of the Android-based robot are over 99% and over 98%, respectively, under various scene conditions. Especially, the execution time of license plate recognition, including license plate detection, is only about 0.7 second per frame on the Android-based robot.


2020 ◽  
Vol 2020 (1) ◽  
pp. 78-81
Author(s):  
Simone Zini ◽  
Simone Bianco ◽  
Raimondo Schettini

Rain removal from pictures taken under bad weather conditions is a challenging task that aims to improve the overall quality and visibility of a scene. The enhanced images usually constitute the input for subsequent Computer Vision tasks such as detection and classification. In this paper, we present a Convolutional Neural Network, based on the Pix2Pix model, for rain streaks removal from images, with specific interest in evaluating the results of the processing operation with respect to the Optical Character Recognition (OCR) task. In particular, we present a way to generate a rainy version of the Street View Text Dataset (R-SVTD) for "text detection and recognition" evaluation in bad weather conditions. Experimental results on this dataset show that our model is able to outperform the state of the art in terms of two commonly used image quality metrics, and that it is capable to improve the performances of an OCR model to detect and recognise text in the wild.


Author(s):  
Yongjie Zou ◽  
Yongjun Zhang ◽  
Jun Yan ◽  
Xiaoxu Jiang ◽  
Tengjie Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document