scholarly journals An ergonomics action research demonstration: integrating human factors into assembly design processes

2021 ◽  
Author(s):  
Judy Lynn Village ◽  
M. Greig ◽  
Filippo A. Salustri ◽  
Saeed Zolfaghari ◽  
W. P. Neumann

In action research (AR), the researcher participates ‘in’ the actions in an organisation, while simultaneously reflecting ‘on’ the actions to promote learning for both the organisation and the researchers. This paper demonstrates a longitudinal AR collaboration with an electronics manufacturing firm where the goal was to improve the organisation’s ability to integrate human factors (HF) proactively into their design processes. During the three-year collaboration, all meetings, workshops, interviews and reflections were digitally recorded and qualitatively analysed to inform new ‘actions’. By the end of the collaboration, HF tools with targets and sign-off by the HF specialist were integrated into several stages of the design process, and engineers were held accountable for meeting the HF targets. We conclude that the AR approach combined with targeting multiple initiatives at different stages of the design process helped the organisation find ways to integrate HF into their processes in a sustainable way. Practitioner Summary: Researchers acted as a catalyst to help integrate HF into the engineering design process in a sustainable way. This paper demonstrates how an AR approach can help achieve HF integration, the benefits of using a reflective stance and one method for reporting an AR study.

2021 ◽  
Author(s):  
Judy Lynn Village ◽  
M. Greig ◽  
Filippo A. Salustri ◽  
Saeed Zolfaghari ◽  
W. P. Neumann

In action research (AR), the researcher participates ‘in’ the actions in an organisation, while simultaneously reflecting ‘on’ the actions to promote learning for both the organisation and the researchers. This paper demonstrates a longitudinal AR collaboration with an electronics manufacturing firm where the goal was to improve the organisation’s ability to integrate human factors (HF) proactively into their design processes. During the three-year collaboration, all meetings, workshops, interviews and reflections were digitally recorded and qualitatively analysed to inform new ‘actions’. By the end of the collaboration, HF tools with targets and sign-off by the HF specialist were integrated into several stages of the design process, and engineers were held accountable for meeting the HF targets. We conclude that the AR approach combined with targeting multiple initiatives at different stages of the design process helped the organisation find ways to integrate HF into their processes in a sustainable way. Practitioner Summary: Researchers acted as a catalyst to help integrate HF into the engineering design process in a sustainable way. This paper demonstrates how an AR approach can help achieve HF integration, the benefits of using a reflective stance and one method for reporting an AR study.


2021 ◽  
Author(s):  
Judy Lynn Village ◽  
Michael Greig ◽  
Saeed Zolfaghari ◽  
Filippo A. Salustri ◽  
W. P. Neumann

OCCUPATIONAL APPLICATIONS In a longitudinal collaboration with engineers and human factors specialists at an electronics manufacturer, five engineering design tools were adapted to include human factors. The tools, many with required human factors targets, were integrated at each stage of assembly design to increase the proactive application of human factors. This article describes the process of adapting the five tools within the collaborating organization. Findings suggest 12 key features of human factors tools, most importantly that they “fit” with engineering processes, language, and tools; directly address business goals and influence key metrics; and are quantifiable and can demonstrate change. To be effective in an engineering design environment, it is suggested that human factors specialists increase their understanding of their organization’s design process, learn which tools are commonly used in engineering, focus on important metrics for the business goals, and incorporate human factors into engineering-based tools and worksystem design practices in their organizations. TECHNICAL ABSTRACT Rationale: Design engineers use diverse tools in design, but few incorporate human factors, even though optimizing human performance can further improve operational performance. There is a need for practical tools to help engineers integrate human factors into production design processes. Purpose: This article demonstrates how five engineering design tools were adapted to include human factors and were integrated into design processes within the case study organization. It also provides features of an effective human factors tool and recommendations for practitioners. Method: A longitudinal collaboration with engineers and human factors specialists in a large electronics manufacturing organization allowed in vivo adaptation and testing of various tools in an action research methodology. Qualitative data were recorded from multiple sources, then transcribed and analyzed over a 3-year period. Results: The adapted tools integrated into each stage of the design process included the human factors process failure mode effects analysis, human factors design for assembly, human factors design for fixtures, workstation efficiency evaluator, and human factors kaizens. Each tool had a unique participatory development process; 12 features are recommended for effective human factors tools based on the findings herein. Most importantly, tools should “fit” with existing engineering processes, language, and tools; directly address business goals and influence key metrics; and be quantifiable and demonstrate change. Conclusions: Engineers and management responded positively to the five tools adapted for human factors because they were designed to help improve assembly design and achieve their business goals. Several of the human factors tools became required targets within the design process, ensuring that human factors considerations are built into all future design processes. Adapting engineering tools, rather than using human factors tools, required a shift for human factors specialists, who needed to expand their knowledge of engineering processes, tools, techniques, language, metrics, and goals.


2021 ◽  
Author(s):  
Judy Lynn Village ◽  
Michael Greig ◽  
Saeed Zolfaghari ◽  
Filippo A. Salustri ◽  
W. P. Neumann

OCCUPATIONAL APPLICATIONS In a longitudinal collaboration with engineers and human factors specialists at an electronics manufacturer, five engineering design tools were adapted to include human factors. The tools, many with required human factors targets, were integrated at each stage of assembly design to increase the proactive application of human factors. This article describes the process of adapting the five tools within the collaborating organization. Findings suggest 12 key features of human factors tools, most importantly that they “fit” with engineering processes, language, and tools; directly address business goals and influence key metrics; and are quantifiable and can demonstrate change. To be effective in an engineering design environment, it is suggested that human factors specialists increase their understanding of their organization’s design process, learn which tools are commonly used in engineering, focus on important metrics for the business goals, and incorporate human factors into engineering-based tools and worksystem design practices in their organizations. TECHNICAL ABSTRACT Rationale: Design engineers use diverse tools in design, but few incorporate human factors, even though optimizing human performance can further improve operational performance. There is a need for practical tools to help engineers integrate human factors into production design processes. Purpose: This article demonstrates how five engineering design tools were adapted to include human factors and were integrated into design processes within the case study organization. It also provides features of an effective human factors tool and recommendations for practitioners. Method: A longitudinal collaboration with engineers and human factors specialists in a large electronics manufacturing organization allowed in vivo adaptation and testing of various tools in an action research methodology. Qualitative data were recorded from multiple sources, then transcribed and analyzed over a 3-year period. Results: The adapted tools integrated into each stage of the design process included the human factors process failure mode effects analysis, human factors design for assembly, human factors design for fixtures, workstation efficiency evaluator, and human factors kaizens. Each tool had a unique participatory development process; 12 features are recommended for effective human factors tools based on the findings herein. Most importantly, tools should “fit” with existing engineering processes, language, and tools; directly address business goals and influence key metrics; and be quantifiable and demonstrate change. Conclusions: Engineers and management responded positively to the five tools adapted for human factors because they were designed to help improve assembly design and achieve their business goals. Several of the human factors tools became required targets within the design process, ensuring that human factors considerations are built into all future design processes. Adapting engineering tools, rather than using human factors tools, required a shift for human factors specialists, who needed to expand their knowledge of engineering processes, tools, techniques, language, metrics, and goals.


Author(s):  
Steven Lindberg ◽  
Matthew I. Campbell

Abstract Individual engineering design projects face different challenges depending on their scale. Instead of dealing with problems of complex multidisciplinary systems, small scale design must overcome issues of limited resources. The philosophy of agile software development has been highly successful in addressing similar issues in the software engineering realm over the past two decades. Through the design and prototyping of a low-budget desktop stereolithography printer, the application of agile principles to engineering design process is explored. The printer’s design is discussed in detail to provide examples of successes and failures when these agile principles are put into practice. The paper concludes with a discussion of how agile principles could be leveraged in engineering design. The approach taken in this paper is more of a longitudinal study of a single design process over a twelve-month period as opposed to rigorous experiments that engage multiple users in short design scenarios. Nonetheless, this case study demonstrates how the application of agile principles can inform, improve, and complement traditional engineering design processes.


Ergonomics ◽  
2014 ◽  
Vol 57 (10) ◽  
pp. 1574-1589 ◽  
Author(s):  
J. Village ◽  
M. Greig ◽  
F. Salustri ◽  
S. Zolfaghari ◽  
W.P. Neumann

2021 ◽  
Vol 2145 (1) ◽  
pp. 012076
Author(s):  
Supaluk Sasangbong ◽  
Jiradawan Huntula

Abstract The research aim was to develop creativity of grade 5 students through STEM education in electricity. There were 15 students of Grade 5 in Khon Kaen Province in 2020 participated in this study. The action research was implemented to this study with three loops of action research to improve creativity of students. The physics contents consisted of simple circuit, conductor, insulator, switch, connecting battery in a series circuit and a parallel circuit, series and parallel circuit and the motor connection. The fifteen lessons were separated into three loops of actions. Each loop of lessons consisted of three Predict-Observe-Explain (POE) lessons, and a lesson which is an Engineering design process lesson for designing product to improve student’s creativity in electricity. The students were fluent in designing various tasks to solve problems arising from a given classroom situation and had flexibility and elaboration in given reasons in selecting the materials to create the works. At the last lesson of the each action loops the data was collected to show how students improved their creativity. The student’s work and their presentation were evaluated by the creativity’s rubric scores in four dimensions of Originality, Fluency, Flexibility and Elaboration. The results show that student’s creativity were improve by STEM education in electricity. All dimension of creativity which are originality, fluency, flexibility and elaboration were improved from loop 1 to loop 3 of action research.


Author(s):  
W. P. Neumann ◽  
J. Winkel

A case study in Volvo Powertrain is conducted to examine the distribution of responsibility for human factors in the companies’ engineering design process. Design decisions with human factors impact, and hence system performance implications, are identified in the design of both the product and the production system in a chain of decisions, spread across multiple stakeholder groups. Thus the organisational structure of the engineering design process appears to influence the ability to handle human factors appropriately at each stage of design. Responsibility (although perhaps not accountability) appears to be distributed throughout the engineering design process. Thus human factors aspects require careful coordination throughout engineering design.


Science Scope ◽  
2017 ◽  
Vol 041 (01) ◽  
Author(s):  
Nicholas Garafolo ◽  
Nidaa Makki ◽  
Katrina Halasa ◽  
Wondimu Ahmed ◽  
Kristin Koskey ◽  
...  

Procedia CIRP ◽  
2021 ◽  
Vol 100 ◽  
pp. 660-665
Author(s):  
Giovanni Formentini ◽  
Núria Boix Rodríguez ◽  
Claudio Favi ◽  
Marco Marconi

Sign in / Sign up

Export Citation Format

Share Document