parallel circuit
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 59)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Marriatyi Morsin ◽  
◽  
Halizah Ali ◽  

Electrical Technology is one of the main courses for Diploma in Electrical Engineering students in Politeknik Malaysia. The subject has been delivered conventionally; however, due to the Covid-19 pandemic, relatively it has changed the landscape in delivery method. Regarding this problem, an innovation by using an online learning application such as mobile applications is a must. There are many mobile applications provided in the Google Playstore; however, the function is either limited to one function for each mobile application or too complicated for diploma students. This paper presents the block-based programming language used in App Inventor to make the creation of mobile apps for basic electrical concepts for electrical engineering students in Politeknik namely My ReSist. This app is used to convert the resistance color codes to resistance values and calculate the total resistance in the circuit as well as to do Star-Delta transformations. Results showed that this mobile application is useful for students to solve basic electrical concept including total resistance in series and parallel circuit. It is proved that this app is user-friendly and attractive.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012076
Author(s):  
Supaluk Sasangbong ◽  
Jiradawan Huntula

Abstract The research aim was to develop creativity of grade 5 students through STEM education in electricity. There were 15 students of Grade 5 in Khon Kaen Province in 2020 participated in this study. The action research was implemented to this study with three loops of action research to improve creativity of students. The physics contents consisted of simple circuit, conductor, insulator, switch, connecting battery in a series circuit and a parallel circuit, series and parallel circuit and the motor connection. The fifteen lessons were separated into three loops of actions. Each loop of lessons consisted of three Predict-Observe-Explain (POE) lessons, and a lesson which is an Engineering design process lesson for designing product to improve student’s creativity in electricity. The students were fluent in designing various tasks to solve problems arising from a given classroom situation and had flexibility and elaboration in given reasons in selecting the materials to create the works. At the last lesson of the each action loops the data was collected to show how students improved their creativity. The student’s work and their presentation were evaluated by the creativity’s rubric scores in four dimensions of Originality, Fluency, Flexibility and Elaboration. The results show that student’s creativity were improve by STEM education in electricity. All dimension of creativity which are originality, fluency, flexibility and elaboration were improved from loop 1 to loop 3 of action research.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6868
Author(s):  
Naoyuki Yoshioka ◽  
Naoto Nagaoka

The deterioration of lithium-ion batteries has been detected by an increase in the battery impedance by means of an alternating current method or a battery capacity test. These methods require an interruption of the operation because the battery has to be removed. A method estimating equivalent circuit parameters of a lithium-ion battery during operation is proposed in this article. The increase in the internal impedance has a close relation to the deterioration of the battery. The circuit is expressed by a resister and an RC parallel circuit connected in series. The parameters can be estimated by applying a convolution technique to the voltage and current fluctuation of the battery during operation. A diagnosis circuit using a microcomputer is developed using a simple algorithm employing z-transformation in the parameter estimation. The estimated parameters depend on its state of charge (SOC) and ambient temperature. The SOC dependency is solved by estimating timing, and the temperature dependency is corrected by a function derived in this article. The deterioration diagnosis of the battery can be applied to a solar power generation system, and the feasibility is discussed in this article.


Author(s):  
Muhammad Hadrami Hamdan ◽  
◽  
Nur Aqilah Mat Som ◽  
Amirul Abdul Rashid ◽  
Gilbert Jugi Jimmy ◽  
...  

This study presents a technique in recovering energy from low-grade waste heat of a Proton Exchange Membrane Fuel Cell (PEMFC). The goal is to study the functionality and performance using a multiple cell thermoelectric generator (TEG) module. The test bench consists of a heating element, a test section, and a cooling section. The heating element supplies a hot stream temperature of 53°C and 58°C that represents the waste heat from an actual PEMFC stack. The module comprises four TEG cells with heat pipes coupled with a heat sink system. The main variables were the TEG cooling modes of natural convection (0 m/s) and forced convection (at 5 m/s and 10 m/s) and the series and parallel circuit configurations of the module. At 58°C waste heat temperature, forced convection cooling at 10 m/s gave the highest voltage and power output of 140 mV and 1960 µW. The outputs of the series circuit was 159% higher than the parallel circuit. This initial simple TEG module design has shown that it has a good prospect to compensate for the ultra-low waste heat temperature of a PEMFC. Future designs of the modules need to identify a more optimized approach to improve the outputs and contribute to the long-term sustainability of PEMFC systems.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Elena N Judd ◽  
Samantha M Lewis ◽  
Abigail L Person

The cerebellum consists of parallel circuit modules that contribute to diverse behaviors, spanning motor to cognitive. Recent work employing cell-type-specific tracing has identified circumscribed output channels of the cerebellar nuclei (CbN) that could confer tight functional specificity. These studies have largely focused on excitatory projections of the CbN, however, leaving open the question of whether inhibitory neurons also constitute multiple output modules. We mapped output and input patterns to intersectionally restricted cell types of the interposed and adjacent interstitial nuclei in mice. In contrast to the widespread assumption of primarily excitatory outputs and restricted inferior olive-targeting inhibitory output, we found that inhibitory neurons from this region ramified widely within the brainstem, targeting both motor- and sensory-related nuclei, distinct from excitatory output targets. Despite differences in output targeting, monosynaptic rabies tracing revealed largely shared afferents to both cell classes. We discuss the potential novel functional roles for inhibitory outputs in the context of cerebellar theory.


2021 ◽  
Vol 19 ◽  
pp. 499-504
Author(s):  
V. Samoylenko ◽  
◽  
A. Firsov ◽  
A. Pazderin ◽  
P. Ilyushin ◽  
...  

The paper presents an approach for making decisions about the future development of a distribution grid under uncertainty conditions. The levels of a grid hosting capacity and adequacy are examined using probabilistic approach compared to the conventional deterministic fit-andforget approach. It is shown that the probabilistic approach according to the 99 % confidence probability saves significant costs in comparison with the deterministic approach. The probabilistic calculations prove the use of an equipment rated capacity downsized by 2 points of a typical IEC scale, and in some cases to refuse the construction of a parallel circuit. The main contribution of the paper is a method for choosing an effective rated voltage of a distribution grid in a probabilistic interpretation based on the conventional formulas of Still, Zalessky and Illarionov. The technique includes obtaining the probability of loads location at different distances from power supply centre and the probability of load power distribution in a given range of values. It is shown that the calculation using the developed method makes possible to prefer grid rated voltage at least 1 point downsized by IEC scale with sufficient savings due to the difference in the equipment price compared with the deterministic fit-and-forget approach.


Author(s):  
Amalia Amira Rashidah ◽  
Amar Lohot Tanjung ◽  
Sindi H Sembiring

Charcoal is the residual waste from the heat decomposition process of carbon-containing materials, most of whose components are carbon. This study aims to determine the frequency of charcoal water as an electrolyte solution to produce an alternative energy source that is environmentally friendly. The method used in the experiment is to find the type of water with the addition of zinc and copper and to measure the sample voltage of charcoal water to determine the optimum mass and optimum interaction time. The variation in the volume of water with 50 ml and 100 ml of charcoal water was produced, with the addition of zinc and copper in the size of 1x5 cm, 2x5 cm, 3x5 cm which resulted in fluctuations in each data. For example, the difference in voltage value in the type of water used is tap water, 100 ml well water with the addition of zinc and copper measuring 2x5 cm. Tap water, namely with an electric voltage of 0.65 V, 0.70 V, 0.60 V, 0.60 V, 0.75 V and well water with an electric voltage of 0.60 V, 0.55 V, 0.55 V, 0.55 V, 0.55 V. Less than the maximum frequency produced with two glasses that are not made into a series or parallel circuit.


2021 ◽  
Author(s):  
Priscilla Ambrosi ◽  
Talia N Lerner

The basal ganglia operate largely in closed parallel loops, including an associative circuit for goal-directed behavior originating from the dorsomedial striatum (DMS) and a somatosensory circuit important for habit formation originating from the dorsolateral striatum (DLS). An exception to this parallel circuit organization has been proposed to explain how information might be transferred between striatal subregions, for example from DMS to DLS during habit formation. The "ascending spiral hypothesis" proposes that DMS disinhibits dopamine signaling in DLS through a tri-synaptic, open-loop striato-nigro-striatal circuit. Here, we used transsynaptic and intersectional genetic tools to investigate both closed- and open-loop striato-nigro-striatal circuits. We found strong evidence for closed loops, which would allow striatal subregions to regulate their own dopamine release. We also found evidence for functional synapses in open loops. However, these synapses were unable to modulate tonic dopamine neuron firing, questioning the prominence of their role in mediating crosstalk between striatal subregions.


Sign in / Sign up

Export Citation Format

Share Document