scholarly journals Experimental and numerical studies of heat and moisture transfer in soils at various conditions

Author(s):  
Lam Dang

The main purpose of this study is to provide a better understanding of heat and moisture transfer in soils under high-temperature (> 40°C) conditions. Through a numerical analysis of the experimental apparatus using COMSOL, it was found that one-dimensional formulation based on the finite volume method was sufficient to numerically study the governing partial differential equations of coupled heat and moisture transfer in soils. An existing experimental apparatus and some of its experimental procedures were improved in order to obtain more accurate test results. Based on a conservative uncertainty analysis, the maximum overall uncertainties at 95% confidence level were 15.5% for thermal conductivity and 9.20% for soil volumetric heat capacity. The maximum overall uncertainty for moisture content was estimated to be 48.6% at saturation ratio (SR) of 0.25 and reduced to 29.9% at SR of 0.5. The heat and moisture transfer in the soil column based on the coupled governing equations were numerically simulated to compare with the experiments done on three soil types (fine soil BC1, medium soil NB2, and coarse soil QC2) with different saturation ratios (from 0.00 to 0.70) under different heating conditions (mostly from 42C and up). It was found that the simulations for coarser soils were less accurate to predict the moisture movements and temperature responses because the moisture could flow faster in coarser soils. The pure heat conduction model was also compared with the experiments and showed higher errors in the temperature responses (~2% minimum and ~5% maximum errors) than the equations of coupled heat and moisture transfer do Coarser soils, because of their higher sand contents, transferred more heat during transient time when the entire soil column was still quite wet, but less heat transferred during steady-state time when a part of the soil column became dry. In conclusion, the worst percentage differences between predicted and measured temperatures range from 0.89% to 3.52%, while the worst percentage differences between predicted and measured moisture contents range from 4.67% to 7.53%, using the one-dimensional formulations of the theoretical model of coupled heat and moisture transfer in soils

2021 ◽  
Author(s):  
Lam Dang

The main purpose of this study is to provide a better understanding of heat and moisture transfer in soils under high-temperature (> 40°C) conditions. Through a numerical analysis of the experimental apparatus using COMSOL, it was found that one-dimensional formulation based on the finite volume method was sufficient to numerically study the governing partial differential equations of coupled heat and moisture transfer in soils. An existing experimental apparatus and some of its experimental procedures were improved in order to obtain more accurate test results. Based on a conservative uncertainty analysis, the maximum overall uncertainties at 95% confidence level were 15.5% for thermal conductivity and 9.20% for soil volumetric heat capacity. The maximum overall uncertainty for moisture content was estimated to be 48.6% at saturation ratio (SR) of 0.25 and reduced to 29.9% at SR of 0.5. The heat and moisture transfer in the soil column based on the coupled governing equations were numerically simulated to compare with the experiments done on three soil types (fine soil BC1, medium soil NB2, and coarse soil QC2) with different saturation ratios (from 0.00 to 0.70) under different heating conditions (mostly from 42C and up). It was found that the simulations for coarser soils were less accurate to predict the moisture movements and temperature responses because the moisture could flow faster in coarser soils. The pure heat conduction model was also compared with the experiments and showed higher errors in the temperature responses (~2% minimum and ~5% maximum errors) than the equations of coupled heat and moisture transfer do Coarser soils, because of their higher sand contents, transferred more heat during transient time when the entire soil column was still quite wet, but less heat transferred during steady-state time when a part of the soil column became dry. In conclusion, the worst percentage differences between predicted and measured temperatures range from 0.89% to 3.52%, while the worst percentage differences between predicted and measured moisture contents range from 4.67% to 7.53%, using the one-dimensional formulations of the theoretical model of coupled heat and moisture transfer in soils


Author(s):  
Michael P. Deru ◽  
Allan T. Kirkpatrick

Abstract In this paper the effects of moisture on the heat transfer from two basic types of building foundations, a slab-on-grade and a basement, are examined. A two-dimensional finite element heat and moisture transfer program is used to show the effects of precipitation, soil type, foundation insulation, water table depth, and freezing on the heat transfer from the building foundation. Comparisons are made with a simple heat conduction model to illustrate the dependency of the soil thermal conductivity on moisture content.


2001 ◽  
Vol 124 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Michael P. Deru ◽  
Allan T. Kirkpatrick

In this paper, the effects of moisture on the heat transfer from two basic types of building foundations, a slab-on-grade and a basement, are examined. A two-dimensional finite element heat and moisture transfer program is used to show the effects of precipitation, soil type, foundation insulation, water table depth, and freezing on the heat transfer from the building foundation. Comparisons are made with a simple heat conduction model to illustrate the dependency of the soil thermal conductivity on moisture content.


2021 ◽  
pp. 174425912110560
Author(s):  
Yassine Chbani Idrissi ◽  
Rafik Belarbi ◽  
Mohammed Yacine Ferroukhi ◽  
M’barek Feddaoui ◽  
Driss Agliz

Hygrothermal properties of building materials, climatic conditions and energy performance are interrelated and have to be considered simultaneously as part of an optimised building design. In this paper, a new approach to evaluate the energy consumption of residential buildings in Morocco is presented. This approach is based on the effect of coupled heat and moisture transfer in typical residential buildings and on their responses to the varied climatic conditions encountered in the country. This approach allows us to evaluate with better accuracy the response of building energy performance and the indoor comfort of building occupants. Annual energy consumption, cooling and heating energy requirements were estimated considering the six climatic zones of Morocco. Based on the results, terms related to coupled heat and moisture transfer can effectively correct the existing energy consumption calculations of the six zones of Morocco, which currently do not consider energy consumption due to coupled heat and moisture transfer.


Sign in / Sign up

Export Citation Format

Share Document