Computational Simulation of Multi-Phase Coupled Heat and Moisture Transfer in Phase Change and Self-Heating Porous Materials

Author(s):  
Sheng Li ◽  
Yi Li ◽  
Fengzhi Li ◽  
Shuxiao Wang
2009 ◽  
Vol 23 (03) ◽  
pp. 501-504 ◽  
Author(s):  
FENGZHI LI

In recent years, the use of phase change materials (PCM) to improve heat and moisture transfer properties of clothing has gained considerable attention. The PCM distribution in the clothing impacts heat and moisture transfer properties of the clothing significantly. For describing the mechanisms of heat and moisture transfer in clothing with PCM and investigating the effect of the PCM distribution, a new dynamic model of coupled heat and moisture transfer in porous textiles with PCM was developed. The effect of water content on physical parameters of textiles and heat transfer with phase change in the PCM microcapsules were considered in the model. Meanwhile, the numerical predictions were compared with experimental data, and good agreement was observed between the two, indicating that the model was satisfactory. Also the effects of the PCM distribution on heat transfer in the textiles-PCM microcapsule composites were investigated by using the model.


2011 ◽  
Vol 88-89 ◽  
pp. 470-474
Author(s):  
Feng Zhi Li ◽  
Peng Fei Wang ◽  
Yi Li

A model of heat and moisture transfer in human-clothing with PCM-environment system is developed. In the model, the improved 25-node model is used for simulating human thermo- regulation, and the coupled heat and moisture model is applied to the PCM’s clothing. The model predictions and experimental data are compared. Also, the influences of the PCM on human skin temperature and sweat accumulation are predicted. The results are helpful to design of thermal functional clothing.


2013 ◽  
Vol 796 ◽  
pp. 601-606 ◽  
Author(s):  
Feng Zhi Li ◽  
Yang Wang ◽  
Yi Li

To investigate heat and moisture transfer mechanisms of the pilots anti-G suit with phase change materials and improve the thermal performance of the garment, a mathematical model for pilot-anti-G suit-environment system is developed. In the model, the coupled heat and moisture transfer and thermal regulation process of phase change materials (PCM) in the anti-G suit are considered, and an 85-node thermal regulatory model is used to simulate human thermal responses. The model is validated by literature experimental data. Then, the parameter effects of PCM on the thermal stress index of the pilot are analyzed based on orthogonal calculation method by utilizing the model. Conclusion shows that the more PCM content and higher latent heat become, the less thermal stress index is.


2021 ◽  
pp. 174425912110560
Author(s):  
Yassine Chbani Idrissi ◽  
Rafik Belarbi ◽  
Mohammed Yacine Ferroukhi ◽  
M’barek Feddaoui ◽  
Driss Agliz

Hygrothermal properties of building materials, climatic conditions and energy performance are interrelated and have to be considered simultaneously as part of an optimised building design. In this paper, a new approach to evaluate the energy consumption of residential buildings in Morocco is presented. This approach is based on the effect of coupled heat and moisture transfer in typical residential buildings and on their responses to the varied climatic conditions encountered in the country. This approach allows us to evaluate with better accuracy the response of building energy performance and the indoor comfort of building occupants. Annual energy consumption, cooling and heating energy requirements were estimated considering the six climatic zones of Morocco. Based on the results, terms related to coupled heat and moisture transfer can effectively correct the existing energy consumption calculations of the six zones of Morocco, which currently do not consider energy consumption due to coupled heat and moisture transfer.


Sign in / Sign up

Export Citation Format

Share Document