scholarly journals Combined biological and advanced oxidation processes for the treatment of an actual slaughterhouse wastewater

Author(s):  
Ciro Fernando Bustillo Lecompte

Environmental protection initiatives and increasing market demand for green practices are driving the meat processing industry to consider sustainable methods for wastewater treatment of slaughterhouse wastewater. On- site treatment is the preferred option to treat the slaughterhouse effluents for water reuse and potential energy recovery due to the conversion of organics into biogas. A thorough review of advancements in slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry, environmental impacts, health effects, and regulatory frameworks relevant to the slaughterhouse wastewater management is presented in this study. Significant progress in high-rate anaerobic treatment, nutrient removal, advanced oxidation processes, and combined processes for an actual slaughterhouse wastewater treatment are highlighted. The optimization of individual and combined processes was performed in this study using quadratic modeling, degradation mechanisms, and response surface methodology to maximize CH4 yield and the removal of TOC and TN while minimizing TSS and H2O2 residuals. The effects of the flow rate, pH, influent TOC concentration, H2O2 dosage, and their interaction on the overall treatment efficiency and CH4 yield were studied. In the final part of this study, an optimized combined anaerobic–aerobic and UV/H2O2 system with recycle was evaluated using a cost- effectiveness analysis by minimizing treatment time, electrical energy consumption, and the overall incurred treatment costs. The agreement between model predictions and experimental values indicated that the proposed models could describe the performance of individual and combined systems for actual SWW treatment. The maximum TOC and TN removals of 91.29 and 86.05%, CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% were found at optimum conditions of influent TOC concentration of 626 mg/L, feed flow rate of 45 mL/min, H2O2 dosage of 350 mg/L, and pH of 6.59. The minimum total retention time was determined to be 10 h with individual residence times of 6.82 h, 2.40 h, and 47 min in the ABR, AS bioreactor, and UV/H2O2 photoreactor, respectively. A minimum electrical power consumption of 0.0194 kWh for an overall treatment cost of 0.12 $/m3 were obtained based on the cost-effectiveness analysis. Results show that the application of combined biological and advanced oxidation processes is useful for on-site slaughterhouse wastewater treatment. Keywords: Slaughterhouse wastewater, anaerobic digestion, activated sludge, advanced oxidation processes, process optimization, cost-effectiveness analysis.

2021 ◽  
Author(s):  
Ciro Fernando Bustillo Lecompte

Environmental protection initiatives and increasing market demand for green practices are driving the meat processing industry to consider sustainable methods for wastewater treatment of slaughterhouse wastewater. On- site treatment is the preferred option to treat the slaughterhouse effluents for water reuse and potential energy recovery due to the conversion of organics into biogas. A thorough review of advancements in slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry, environmental impacts, health effects, and regulatory frameworks relevant to the slaughterhouse wastewater management is presented in this study. Significant progress in high-rate anaerobic treatment, nutrient removal, advanced oxidation processes, and combined processes for an actual slaughterhouse wastewater treatment are highlighted. The optimization of individual and combined processes was performed in this study using quadratic modeling, degradation mechanisms, and response surface methodology to maximize CH4 yield and the removal of TOC and TN while minimizing TSS and H2O2 residuals. The effects of the flow rate, pH, influent TOC concentration, H2O2 dosage, and their interaction on the overall treatment efficiency and CH4 yield were studied. In the final part of this study, an optimized combined anaerobic–aerobic and UV/H2O2 system with recycle was evaluated using a cost- effectiveness analysis by minimizing treatment time, electrical energy consumption, and the overall incurred treatment costs. The agreement between model predictions and experimental values indicated that the proposed models could describe the performance of individual and combined systems for actual SWW treatment. The maximum TOC and TN removals of 91.29 and 86.05%, CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% were found at optimum conditions of influent TOC concentration of 626 mg/L, feed flow rate of 45 mL/min, H2O2 dosage of 350 mg/L, and pH of 6.59. The minimum total retention time was determined to be 10 h with individual residence times of 6.82 h, 2.40 h, and 47 min in the ABR, AS bioreactor, and UV/H2O2 photoreactor, respectively. A minimum electrical power consumption of 0.0194 kWh for an overall treatment cost of 0.12 $/m3 were obtained based on the cost-effectiveness analysis. Results show that the application of combined biological and advanced oxidation processes is useful for on-site slaughterhouse wastewater treatment. Keywords: Slaughterhouse wastewater, anaerobic digestion, activated sludge, advanced oxidation processes, process optimization, cost-effectiveness analysis.


Author(s):  
Masroor Mohajerani ◽  
Mehrab Mehrvar ◽  
Farhad Ein-Mozaffari

A review of recent advancements in the combination of ultrasonolysis with other advanced oxidation processes is studied. This study is based on the recent achievements and developments in the field of water and wastewater treatment using ultrasonic irradiation by means of acoustic cavitation with other advanced oxidation technologies. The most important parameter in combined methods is the synergetic effect which is a variable relative to the type of contaminant(s) and other physicochemical properties. The synergetic effect has the key role in process intensification so that a higher synergetic effect provides a higher intensified process efficiency. Results showed that sonolysis is a method that can increase the synergetic percentage in lowering fixed and even operating cost of the wastewater remediation. The combination of photolysis, photocatalysis, Fenton, photo-Fenton, and ozonation processes with ultrasonolysis results in hydroxyl radical production and therefore, the degradation of the organic chemicals. The effect of various parameters on the efficiency of combined processes is investigated in the present study. The combined process performance and the synergetic effect depend on the operating conditions and wastewater characteristics. The synergetic effect can enhance the degradation of organic compounds up to 400%. For example, it has been proven that the sonophotocatalytic process shows over 80% improvement with respect to the photocatalysis alone.


Author(s):  
Gamallo Maria ◽  
Moldes-Diz Yolanda ◽  
Taboada-Puig Roberto ◽  
Lema Juan Manuel ◽  
Feijoo Gumersindo ◽  
...  

Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 116
Author(s):  
Yi-Ping Lin ◽  
Ramdhane Dhib ◽  
Mehrab Mehrvar

Polyvinyl alcohol (PVA) is an emerging pollutant commonly found in industrial wastewater, owing to its extensive usage as an additive in the manufacturing industry. PVA’s popularity has made wastewater treatment technologies for PVA degradation a popular research topic in industrial wastewater treatment. Although many PVA degradation technologies are studied in bench-scale processes, recent advancements in process optimization and control of wastewater treatment technologies such as advanced oxidation processes (AOPs) show the feasibility of these processes by monitoring and controlling processes to meet desired regulatory standards. These wastewater treatment technologies exhibit complex reaction mechanisms leading to nonlinear and nonstationary behavior related to variability in operational conditions. Thus, black-box dynamic modeling is a promising tool for designing control schemes since dynamic modeling is more complicated in terms of first principles and reaction mechanisms. This study seeks to provide a survey of process control methods via a comprehensive review focusing on PVA degradation methods, including biological and advanced oxidation processes, along with their reaction mechanisms, control-oriented dynamic modeling (i.e., state-space, transfer function, and artificial neural network modeling), and control strategies (i.e., proportional-integral-derivative control and predictive control) associated with wastewater treatment technologies utilized for PVA degradation.


Sign in / Sign up

Export Citation Format

Share Document