scholarly journals Sensorless speed estimation for long term flywheel energy storage system in standby mode.

Author(s):  
Rongqiang Liu

A novel technique for sensorless speed estimation is presented in this thesis for squirrel cage induction machine (SCIM) drived long-term flywheel energy storage system (FESS) in standby mode. The SCIM model for long-term large-capacity FESS is presented. Based on dynamic model , a hybrid rotor flux observer and speed observer are derived. The hybrid rotor flux observer takes advantages of both the current model and voltage model flux observers by seamlessly incorporating these two models together for a better flux estimation performance even at low speed range. The fundamental speed observer is derived from the dynamic model for speed estimation with a fast response time for a tradeoff of the adaptive capabilities. In order to observe the speed in standby mode, a modified field-oriented control (FOC) scheme is presented. The hybrid flux observer and speed observer are tested in association with the modified FOC. The proposed control technique adopts approaches in an effort to minimize the impact generated by the excitation and speed estimation process to the FESS. Simulation and experiments are conducted to verify the feasibility of the proposed speed estimation at the standby mode. It is also observed that a step change of excitation current has a significant impact to the existing FESS. A ramp control for excitation current is added to avoid the possible oscillation of the estimated speed and the disturbance to the FESS. The speed estimation settling time is optimized based on the experiment and simulation.

2021 ◽  
Author(s):  
Rongqiang Liu

A novel technique for sensorless speed estimation is presented in this thesis for squirrel cage induction machine (SCIM) drived long-term flywheel energy storage system (FESS) in standby mode. The SCIM model for long-term large-capacity FESS is presented. Based on dynamic model , a hybrid rotor flux observer and speed observer are derived. The hybrid rotor flux observer takes advantages of both the current model and voltage model flux observers by seamlessly incorporating these two models together for a better flux estimation performance even at low speed range. The fundamental speed observer is derived from the dynamic model for speed estimation with a fast response time for a tradeoff of the adaptive capabilities. In order to observe the speed in standby mode, a modified field-oriented control (FOC) scheme is presented. The hybrid flux observer and speed observer are tested in association with the modified FOC. The proposed control technique adopts approaches in an effort to minimize the impact generated by the excitation and speed estimation process to the FESS. Simulation and experiments are conducted to verify the feasibility of the proposed speed estimation at the standby mode. It is also observed that a step change of excitation current has a significant impact to the existing FESS. A ramp control for excitation current is added to avoid the possible oscillation of the estimated speed and the disturbance to the FESS. The speed estimation settling time is optimized based on the experiment and simulation.


2021 ◽  
Vol 22 (1) ◽  
pp. 73-83
Author(s):  
Mohamed Mansour ◽  
Samir Bendoukha ◽  
Nabil Barhoumi ◽  
Mohamed F Mimouni

Abstract This paper examines the modeling and speed–based control of an IM–based flywheel energy storage system (FESS) for integration with a variable wind generation system (VSWG) feeding an online isolated load at the DC bus level. Two traditional control strategies are considered for the FESS, rotor flux oriented control (RFOC) and direct torque control (DTC). Instead of controlling the IM torque directly, the proposed schemes control the measured speed of the FESS–IM to follow a reference value estimated from the required power compensation. Matlab/Simulink simulations show that the tracking performance of the two controllers is comparable.


Author(s):  
Zhu Youfeng ◽  
Liu Xinhua ◽  
Wang Qiang ◽  
Wang Zibo ◽  
Zang Hongyu

Abstract Flywheel energy storage system as a new energy source is widely studied. This paper establishes a dynamic model of a single disk looseness and rub-impact coupling hitch flywheel energy storage rotor system firstly. Then dynamic differential equations of the system under the condition of nonlinear oil film force of the sliding bearing are given. Runge–Kutta method is used to solve the simplified dimensionless differential equations. The effect of variable parameters such as disk eccentricity, stator stiffness and bearing support mass on the system are analyzed. With the increase of eccentricity, the range of period-three motion is significantly reduced and the range of chaotic motion begins to appear in the bifurcation diagram. Meanwhile, stiffness of the stator and mass of the bearing support have a significant influence on the flywheel energy storage rotor system.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Yujiang Qiu ◽  
Shuyun Jiang

Developing a flywheel energy storage system (FESS) with permanent magnetic bearing (PMB) and spiral groove bearing (SGB) brings a great challenge to dynamic control for the rotor system. In this paper, a pendulum-tuned mass damper is developed for 100 kg-class FESS to suppress low-frequency vibration of the system; the dynamic model with four degrees-of-freedom is built for the FESS using Lagrange's theorem; mode characteristics, critical speeds, and unbalance responses of the system are analyzed via theory and experiment. A comparison between the theoretical results and the experiment ones shows that the pendulum-tuned mass damper is effective, the dynamic model is appropriate, and the FESS can run smoothly within the working speed range.


Sign in / Sign up

Export Citation Format

Share Document