scholarly journals Predictive control of multilevel converters for megawatt wind energy conversion systems

2021 ◽  
Author(s):  
Venkata Narasimha Rao Yaramasu

This dissertation proposes two novel medium voltage (MV) multilevel converter configurations for use with permanent magnet synchronous generator (PMSG) based megawatt (MW) wind energy conversion systems (WECS). The classical control techniques, based on linear PI regulators and low band-width modulation, present several technical issues during lower switching frequency operation. To overcome these issues, a high performance finite control-set model predictive control (FCS-MPC) strategy is proposed to control the power converters employed in the MW-PMSG-WECS. The proposed three-level and four-level converters combine the advantages of proven wind turbine technologies, such as low-cost generator-side passive converters, and efficient gridside multilevel converters. The intermediate dc-dc multilevel converters ensure balancing of the capacitor voltages during all operating conditions. With this feature, the grid-side multilevel converters produce better grid current waveforms compared to the back-to-back connected converters. A generalized approach for the predictive control of an n-level diode-clamped converter was investigated. The FCS-MPC strategy for current control and decoupled active/reactive power regulation of grid-connected multilevel converters was also analyzed. The major WECS requirements such as maximum power point tracking, balancing of dc-link capacitor voltages, switching frequency minimization, common-mode voltage mitigation, regulation of net dc-bus voltage, and grid reactive power control have been modeled in terms of power converter switching states. These control objectives have been accomplished during each sampling interval by selecting the switching states which minimize the generator- and grid-side cost functions. Issues related to the weighting factors selection, control delay compensation, accurate extrapolation of references, control of variable switching frequency nature, prediction of variables over two samples with reduced computational burden, and robustness analysis, are also addressed in this dissertation. To keep the dc-bus voltage constant during low voltage ride-through operation, predictive control scheme is proposed for the power converters while storing surplus energy in the turbine-generator rotor inertia. The generation and exchange of reference control variables during symmetrical grid voltage dips is suggested to meet the grid code requirements. The proposed solution is efficient as no energy is dissipated in the dc-link crowbar. The simulation and experimental results validate the proposed MV converters and predictive control schemes.

2021 ◽  
Author(s):  
Venkata Narasimha Rao Yaramasu

This dissertation proposes two novel medium voltage (MV) multilevel converter configurations for use with permanent magnet synchronous generator (PMSG) based megawatt (MW) wind energy conversion systems (WECS). The classical control techniques, based on linear PI regulators and low band-width modulation, present several technical issues during lower switching frequency operation. To overcome these issues, a high performance finite control-set model predictive control (FCS-MPC) strategy is proposed to control the power converters employed in the MW-PMSG-WECS. The proposed three-level and four-level converters combine the advantages of proven wind turbine technologies, such as low-cost generator-side passive converters, and efficient gridside multilevel converters. The intermediate dc-dc multilevel converters ensure balancing of the capacitor voltages during all operating conditions. With this feature, the grid-side multilevel converters produce better grid current waveforms compared to the back-to-back connected converters. A generalized approach for the predictive control of an n-level diode-clamped converter was investigated. The FCS-MPC strategy for current control and decoupled active/reactive power regulation of grid-connected multilevel converters was also analyzed. The major WECS requirements such as maximum power point tracking, balancing of dc-link capacitor voltages, switching frequency minimization, common-mode voltage mitigation, regulation of net dc-bus voltage, and grid reactive power control have been modeled in terms of power converter switching states. These control objectives have been accomplished during each sampling interval by selecting the switching states which minimize the generator- and grid-side cost functions. Issues related to the weighting factors selection, control delay compensation, accurate extrapolation of references, control of variable switching frequency nature, prediction of variables over two samples with reduced computational burden, and robustness analysis, are also addressed in this dissertation. To keep the dc-bus voltage constant during low voltage ride-through operation, predictive control scheme is proposed for the power converters while storing surplus energy in the turbine-generator rotor inertia. The generation and exchange of reference control variables during symmetrical grid voltage dips is suggested to meet the grid code requirements. The proposed solution is efficient as no energy is dissipated in the dc-link crowbar. The simulation and experimental results validate the proposed MV converters and predictive control schemes.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Abdeslam Jabal Laafou ◽  
Abdessalam Ait Madi ◽  
Adnane Addaim ◽  
Abdessamad Intidam

The proposed work presented in this paper is mainly focused on the control of the active and reactive stator powers generated by a wind energy conversion system (WECS) based on the dual feed induction generator (DFIG). This control is achieved by acting on the rotor side converter (RSC) to extract the maximum power from the wind turbine (WT) while regulating the rotor currents. Furthermore, another control objective is achieved by acting on the grid side converter (GSC), in which the DC bus voltage is maintained constant and a unity power factor is ensured. To do that, a new robust control known as active disturbance rejection control (ADRC) has been proposed and applied to the WECS. This control is based on the extended state observer (ESO), which is the main core of this algorithm; it makes the estimation and cancellation of the total effect of various uncertainties (internal and external disturbances) possible in real time. To validate the effectiveness of the proposed approach, the system was modeled and simulated by using the Matlab/Simulink software. Two tests, namely, tracking and robustness tests, were performed to compare the proposed ADRC technique and classical PI controllers. The obtained results are promising and have shown that the proposed control strategy based on ADRC, especially when varying the mode parameters, is performant and very useful.


2017 ◽  
Vol 11 (6) ◽  
pp. 956-968 ◽  
Author(s):  
Venkata Yaramasu ◽  
Apparao Dekka ◽  
Mario J. Durán ◽  
Samir Kouro ◽  
Bin Wu

Author(s):  
Dr. R. C. Bansal ◽  
Dr. Ahmed F Zobaa ◽  
Dr. R. K. Saket

Design and successful operation of wind energy conversion systems (WECs) is a very complex task and requires the skills of many interdisciplinary skills, e.g., civil, mechanical, electrical and electronics, geography, aerospace, environmental etc. Performance of WECs depends upon subsystems like wind turbine (aerodynamic), gears (mechanical), generator (electrical); whereas the availability of wind resources are governed by the climatic conditions of the region concerned for which wind survey is extremely important to exploit wind energy. This paper presents a number of issues related to the power generation from WECs e.g. factors affecting wind power, their classification, choice of generators, main design considerations in wind turbine design, problems related with grid connections, wind-diesel autonomous hybrid power systems, reactive power control of wind system, environmental aspects of power generation, economics of wind power generation, and latest trend of wind power generation from off shore sites.


Sign in / Sign up

Export Citation Format

Share Document